The RECARGA Model

September 29, 2009

Linda Severson Water Resources Engineer

Copyright 2009 Please Contact Author Before Using This Material

www.ma-rs.org

RECARGA Background

- Hydrologic modeling of Bio/Infiltration systems

 Quantify ponding, infiltration, overflow, ET, and recharge
- Does not directly model water quality but many inferences on water quality performance can be obtained from quantifying runoff reduction and adsorption / filtration

Pollutant	Removal Rate (%) ¹	
Total Suspended Solids (TSS)	90 ²	
Metals (Cu, Zn, Pb)	>95 ³	
Total Phosphorus	80 ³	
Total Kjeldahl Nitrogen	65-75 ⁴	
Ammonium	60-80 ⁴	
Organics	90 ²	
Bacteria	90 ²	

1. Data Compiled by Wisconsin DNR (Bioretention Tech. Note 1004, draft)

2. Prince George's County, Md., Department of Environmental Resources, 1999

3. Davis et al. 2003

Davis et al. 2001

Basic Bio-Infiltration Systems (Raingardens)

•Work best in well drained soil. Small drainage area.

Enhanced Bio-Infiltration Systems

• Extra storage layer and and underdrain •Reduces ponding time •More groundwater

recharge • Just use as Filter

Montgomery Associates Resource Solutions, LLC

Infiltration Basin -West Bend, WI

RECARGA Versions

- Version 1.0: Developed by UW-Department of Civil and Environmental Engineering in 2002 by Alejandro Dussaillant
- Version 2.0: Incorporated tributary pervious surfaces, an underdrain, a Graphical User Interface (GUI), continuous variable ET, and output files
- Version 2.1: Added design storm events and a user-supplied inflow hydrograph
- Version 2.2: Enhanced the GUI and made metric mode updates
- <u>Version 2.3</u>: Added a design module
- <u>LA RECARGA Version 1.0</u>: Increased input/output flexibility, modified code structure to reduce model execution time, and enhanced the evapotranspiration routine

RECARGA Model Download

 Wisconsin Version 2.3 is available for download from the Wisconsin Department of Natural Resources website:

http://dnr.wi.gov/runoff/models/

www.ma-rs.org

•

Units English

RECARGA Version 2.3

Bioretention/Raingarden Sizing Program

RECARGA Model Theoretical Framework

Moisture Flux Below the Surface

- Drainage is assumed to be gravity driven only
- User supplies Saturated Hydraulic Conductivity
- Program calculates Unsaturated Hydraulic Conductivity from Van Genuchten Relationship based on moisture content (Van Genuchten, M. T. 1980)

$$Drainage = K_{sat}\Theta^{\frac{1}{2}} \left[1 - \left(1 - \Theta^{\frac{1}{2}}\right)^{m}\right]^{2}$$

 K_{sat} = Saturated Hydraulic Conductivity Θ = dimensionless water content m = 1-1/n n = Van Genuchten Parameter

Montgomery Associates Resource Solutions, LLC

RECARGA Modeling Modes

- Continuous Simulation
 - Model-generated runoff
 - User-supplied inflow to the rain garden
 - Evaporation and percolation simulated between storm events
- Design-Storm
 - SCS Type I, IA, II, III
 - 24- hour storm event plus 2 additional days without rain
 - Summarizes mass balance terms over 3-day period
 - Unit hydrographs scaled by rainfall depth
 - Regional daily ET value read from GUI

Precipitation

- Precipitation
 - Hourly data entered into a tab-delimited text file which also contains an hourly time step and maximum potential evapotranspiration for the region of interest

ラ Mad1981US.txt - Notepad									
<u>File E</u> o	dit F <u>o</u> rmat	<u>V</u> iew <u>F</u>	<u>t</u> elp						
time ((hr)	rain 0	(in.)	evap (in.) 0.003753051					
ĭ		ŏ		0.003753051					
2		0		0.003753051					
3		0		0.003753051					
5		ŏ		0.003753051					
6		0		0.003753051					
7		ŏ		0.003753051					
9		ö		0.003753051					
10		õ		0.003753051					
11		0		0.003753051					
12		0		0.003753051					
14		ŏ		0.003753051					
15		0		0.003753051					
16		õ		0.003753051					
18		ŏ		0.003753051					
19		ō		0.003753051					
20		0		0.003753051					
21		0		0.003753051					
23		ŏ		0.003753051					
24		0		0.003753051					
25		õ		0.003753051					
20 27		õ		0.003753051					
28		ň		0 003753051					

Montgomery Associates Resource Solutions, LLC

Runoff

- Impervious Tributary Surfaces
 - Runoff=rainfall at each time step-available depression storage
- Pervious Surface: SCS curve number methodology
 - User characterizes pervious surface with a CN
 - SCS calculation to find the cumulative runoff for each time step
 - Each timestep the runoff is calculated as the difference in cumulative runoff between timesteps

$$Q = \frac{(P_i - 0.2 * S)^2}{P_i + 0.8 * S}$$

$$s = \frac{100}{CN} - 10$$

$$Q_i = Q - Q_{i-1},$$

Mass Balance

Saturated zones limit drainage from above layer

Summary Screen

RECARGA 23				PLANT SURVIVABILITY TERMS			
Date: 12-Jan-20	004 10:51:45	total time ponded (h)= 129.8					
Output File:	Example txt			max time ponded (b) = 27.5			
Input File: Mad1981		total time RZ saturated (h)= 146.5					
Number of time step:	s= 25.537	total time RZ at wilting point (h)=	1851.3				
CPIL elansed time (s))= 46			total time TZ saturated (h) = 252.3			
or o empsed inter().				may time $R7$ saturated (h)= 28.8			
INDIT TERMS				may time $R7$ studiting point (h)=	648.5		
%Imperations=	ക			1032 time TZ estimated (h)= 45.8	040.0		
Durning CM-				max time 12 saturated (n)= 450	11		
Fervious CN=	100			707 9 05	11		
	1000			127.0 70			
PATIOner Dur	1000 6			2017.0 20.0			
DATIO DATIO	0			2540.0 0.0			
KAIIOpervarg=	4			2981.3 27.0			
T A MED	DEDUTION	W 1/2 A \$	T 55 7 1 1 1 5 5	3764.0 28.8 4042.0 4.5			
LATER	DEPIH(cm)	Ksat (cm/m)	I EXTORE	40438 43			
Depression	15			4058.8 12.5			
Root Zone	45	10.00	2	4073.0 8.5			
Storage	30	15.00	1	4172.3 22.3			
Native		0.34	5	4310.0 0.8			
				52763 35			
Init, Cond.: suction h	lead(cm) <u>≓</u> -100			wilting point times for simulation=	11		
Max. Underdrain flow	w(cmvhn) <u>≓</u> 0.31			554.3 145.3			
Underdrain diam (mr	n) <u>≓</u> 7			652.3 25.3			
				1132.0 75.5			
WATER BALANCE	TERMS			1884.8 648.5			
				2128.5 141.8			
	Volume(m3)	Depth(cm)	%of Inflow	2233.0 11.5			
Inflow	400.52	36.41	100.00	2918.0 187.5			
Runoff	23.66	2.15	5.91	3727.3 67.3			
Recharge	208.58	18.96	52.08	4012.5 34.3			
Evaporation	79.38	7.22	19.82	4643.8 54.5			
Underdrain	95.73	870	23.90	6068.0 460.0			
Storage	-6.83	-0.62	-171	ponded times for simulation= 10			
Infiltrated	376.86	0.02		7263 80			
Precip	5.0.00	73 18		2318.5 27.5			
Imp Infloar	31731	52.89	79.23	29458 03			
Dear Infloar	3032	7.58	757	2070 8 253			
Bacin Starra (and	00.02	39.41	/5/	37675 273			
Daput Statoli (au)		56.41		40422 22			
Mary Balance Charle				40423 23			
Wass Dalance Checks	5. .J.			4007.0 10.8			
Vinson=npui-ron-av	2 750540- 1000	40/1.0 7.0					
	3.7686429+002	41/0.8 20.8					
Vint difference (%)=	-0.0						
vrechargi=mt-et-dsv	NS	overtion times for simulation= 3					
Vrechargi (mij)=	2.082808e+002	2243 28					
Vrech difference (%)	U.U	2956.0 0.3					
dVsoil≓inf-rech-et		3738.5 1.3					
4 <u>X201</u> = 8.889862	/e+001						
dVsfce (m3)=	0.000000e+000						
dVs2=input-roff-inf							

Record Output

Time(hr)	Runon(cm)	Ponding(cm)	Infil(cm)	Runoff(cm)	Drain(cm)	Recharge(cm)	ET(cm)	ThetaRZ	ThetaSZ	ThetaCZ
653	0.817	0	0.817	0	0	0.002	0	0.134	0.194	0.39
654	1.978	0	1.978	0	0	0.002	0	0.204	0.194	0.39
655	4.385	0	4.385	0	0.028	0.002	0	0.292	0.194	0.39
656	2.559	0	2.559	0	0.201	0.002	0	0.327	0.199	0.39
657	0.6	0	0.6	0	0.239	0.002	0	0.322	0.209	0.39
658	0	0	0	0	0.236	0.002	0.017	0.312	0.216	0.39
659	0	0	0	0	0.232	0.002	0.017	0.304	0.219	0.39
660	0	0	0	0	0.228	0.002	0.017	0.297	0.221	0.391
661	0	0	0	0	0.225	0.002	0.017	0.292	0.221	0.391
662	0	0	0	0	0.206	0.002	0.017	0.287	0.221	0.391
663	0	0	0	0	0.18	0.002	0.017	0.283	0.221	0.391
664	0	0	0	0	0.159	0.002	0.004	0.279	0.221	0.392
665	0	0	0	0	0.143	0.002	0	0.276	0.221	0.392
666	0.422	0	0.422	0	0.132	0.002	0	0.289	0.221	0.392
667	1.778	0	1.778	0	0.203	0.002	0	0.33	0.224	0.393
668	2.2	0	2.2	0	0.241	0.002	0	0.353	0.244	0.393
669	0.956	0	0.956	0	0.249	0.002	0	0.343	0.27	0.395
670	0.111	0	0.111	0	0.245	0.002	0	0.328	0.286	0.398
671	0	0	0	0	0.239	0.003	0.017	0.317	0.293	0.403
672	0	0	0	0	0.234	0.004	0.017	0.308	0.296	0.41

The RECARGA Model

Linda Severson Water Resources Engineer

Copyright 2009 Please Contact Author Before Using This Material

www.ma-rs.org