Radar and Multi-sensor Precipitation Estimates in the Midwest

Nancy Westcott
Illinois State Water Survey
Midwestern Regional Climate Center
Institute of Natural Resource Sustainability
University of Illinois
Midwestern Regional Climate Center

Illinois State Water Survey

- One of six NOAA Regional Climate Centers
- **Goals**
 - Increase value and usage of currently available climatic information
 - Coordinate data from regional and state data networks
 - Develop special and regional climate databases
 - Serve as a clearinghouse for climate information

Climate data, information and applied research

- Agriculture
- Climate change
- Energy
- Environment
- Human health
- Risk management
- Transportation
- Water resources
Radar Basics

- Transmitter, receiver, antenna, display system (developed just before WWII; deployed US late 50’s)
- WSR-88D (NEXRAD radars) 10-cm wavelength radio beams traveling at the speed of light
- Beam spirals upwards in a regular way every 2-5 minutes to get a 3-dimensional view of echoes (storms)
 - (1° beam, searchlight conical shape)
 - At 60 km, 1° beam = 1 km wide (3000 ft)
 - At 120 km, 1° beam = 2 km wide
- Along the beam, sample at 250 m to 1 km intervals.
Reflection from Drops

• Reflectivity, Z, measured by radar (signal reflected from the hydrometeors within the beam)
• Backscatter from all hydrometeors in the volume: Reflectivity (power) related to the of the sum of the diameter of the hydrometers to the 6^{th} power, $Z = \sum nD^6$, for hydrometeors < 10 cm.
• Hydrometeors usually follow a skewed distribution, lots of little ones, fewer big ones.
• Z also elated to characteristics of the radar.
Reflectivity and Precipitation

- $Z = \sum nD^6$ – empirically derived; originally drop cameras in various regions of country and different seasons. Now digital methods of measuring hydrometeor size and shape.

- To get to rainfall, effective Z/R relationships, use raingage measurement of precipitation (1970s a radar and over 300 gages spaced every 5 miles in Chicago and Cook Co. to develop a relationship):

 - $Z_e = A R^b$
 - $Z_e = 300 R^{1.4}$, convective rain
 - $Z_e = 600 R^{2.0}$, snow
 - $Z_e = 100 R^{1.6}$, stratiform rain
Size and Density important

• **Size**
 – The larger or more plentiful the hydrometeors in the beam, the greater the reflectivity

• **Ice vs water**
 – water is denser that ice, so gives a larger signal
 – In spring and fall with frozen particles above and melted ones below – messy relationships.

• **Up to now, shape has not been critical.**
New Polarization Measurements

• Shape will be taken into account.
 Usually use only horizontal oriented waves or vertically oriented waves to measure reflectivity
• ZdR, transmitter alternates between both H and V waves and the difference is Z_{dr}.
• Estimated deployment: late 2011-2013
Hydrometeors

- Small rain drop (small Z_{dr})
- Large raindrop (large Z_{dr})
- Hail / graupel
 - If spins (small Z_{dr})
 - If melting (large Z_{dr})
- Snow aggregate (small Z_{dr})
- Snow crystal (large Z_{dr})
New Precipitation Relationships

• being developed taking into account both reflectivity Z and polarization measurements.
• Polarization being added to WSR-88Ds in the near future (December 2011-2013).
• Regardless because drop spectra change with and between storms, radar parameters varies within storms, over time, by season and region.
MPE

- Multi-sensor Precipitation Estimates = Radar + Gage
NWS Real-Time Coop Daily Gages In Midwest

• ~ 750 gages in 530 of 858 Midwest counties
• ~0.9 gage / county (1/1,600 km²)

• Not ideal
MPE info

- Obtain GIS shape file for daily data or netcdf file (from NWS): 24 hour data – manually QCed.
- Archived data 1, 6, 24 hours, from 2002 to present from Codiac Dataset – UCAR.
- MPE Data best 24 hours after valid, when all available gages have been used to adjust radar or MPE
Why use NCEP / NWS gridded data?

Nexrad WSR-88D coverage
Feb 2002- Oct 2006
Gridded Precipitation Data

Stage III/IV MPE data
- Daily data valid at 12 GMT (6 CST)
- Mosaicked into National Grid
- 4 x 4 km grid cells
- new MPE algorithm since Feb 2002
 - data manually QCed at RFCs

Monthly Time Scale
County Averages, 858 counties
HADS GAGES

Tipping Bucket
NWS Quality-Controlled Coop Daily Gages in Midwest

~ 1,500 gages in 775 counties

~ 2.2 gage / county (1/800 km²)

8” non-recording gages

Available ~3-4 months after-the-fact

Reference standard
Median County-Averaged Precipitation by Month

Precipitation, mm

Month, from February 2002 - October 2006

QC_Coop
MPE
Positive Difference QC_Coop > MPE

Absolute Difference,

%}

Month from Feb 2002 - October 2006
County Averaged Rainfall
July 2004

R^2 = 0.61
MPE = 1.2 + 0.68 * QC_Coop

62 % within +/- 25 %
Median 6.5%

MPE Precipitation, inches
QC_Coop Precipitation, inches
Cook County Network
Daily Average Precipitation
Feb 2002 - Sept 2004

a) CCPN vs RDR

b) CCPN vs MPE

25%
For a 3 inch rain

• Factor of 2: 0.01 – 6 inches (WSR-57)

• +/- 50%: 1.5 – 4.5 inches (WSR-88d)

• +/- 25%: 2.25 – 3.75 inches (MPE)
Possible causes of variation in correspondence between MPE and gage

- Precipitation amount
- Number of gages per county or per area
- Distance from Radar
- Convective vs stratiform precipitation
 - Latitude
 - Season
 - Distance from Radar
- Gage Adjustment
Precipitation Amount

25 mm = 1 inch
2.5 cm = 1 inch
Midwest Counties

Number of Observations

- Pct Diff <= -12.5%
- -12.5% < Pct Diff < 12.5%
- Pct Diff >= 12.5%

Positive
- GQ > MPE

Negative
- MPE > QC

QC_Coop Monthly Precipitation, mm

- 25
- 50
- 75
- 100
- 125
- >= 150
Positive
GQ > MPE
Negative
MPE > QC

- Percent Difference <= -12.5 %
- -12.5 % < Percent Difference < 12.5 %
- Percent Difference >= 12.5 %
Number of Gages

- Number of gages / county (monthly)
- Area coverage of gage (monthly)

- Number of gages / grid point (daily)

No effect on agreement between estimates
Distance from Radar

Too Close (within ~30 km):
- Ground clutter filtering
- Beam blockage
- Cone of silence

Too Far:
- Beam wider, higher:
 - 1° at 60 km = 1 km up;
 - 1° at 120 km = 2 km up
Close to Radar – data hole

Summer

6-18 km cloud tops
~ 1 km cloud base
Positive
GQ > MPE
Negative
MPE > QC

Legend
Counties
PDF\text{may_aug}
\begin{align*}
-75 &\quad -50 \\
-50 &\quad -25 \\
-25 &\quad -12.5 \\
-12.5 &\quad 0 \\
0 &\quad 12.5 \\
12.5 &\quad 25 \\
25 &\quad 50 \\
50 &\quad 75
\end{align*}
Cook County Precipitation Network

Legend:
- ▲ KLOT radar
- ● CCPN gages
- ○ HADS gages
- △ ASOS gages
- □ MPE grid cells

Individual CCPN Gage
Daily Comparison
25 weighing buckets gages

#15

Kilometers 0 3 6 12
CCPN gages > .25 cm (0.1 inch)
Feb 2002 - Aug 2005
CCPN Gages ≥ 2.54 cm (≥ 1 inch)
Feb 2002 - Aug 2005
Convective vs Stratiform

• Convective
 – Taller; summertime; extended season in the south

• Stratiform
 – Widespread, not at tall; wintertime; extended season in the north; more snow in northern latitudes
Winter precipitation band;
Max precip < 2.5 km

Vertical slices through storms

Multi-celled Convective Storm: Max Precip > 6-8 km altitude.

2.5 km height at 150 km

- Figure 3-12 Fed. Met. Handbook B
- Range-Radar Beam Altitude Nomogram
Warm Season – May - Aug
May - August

- Convective Precipitation
- Poorest very close to radar, perhaps due to beam blockage or ground clutter filtering or the cone of silence
- Best at distance, wider beam sampling more area – better areal precipitation estimate
- Similar results at all latitudes.
Cold Season Nov-Feb
November - February

- North – snow more common – low stratiform clouds
- Close in - lower elevations better sampled, as antenna not have to sample tall cumulus clouds
- Poorer agreement with range – beam rise above the top of the heaviest precipitation in stratiform layer.
- HADS gages used to adjust radar - typically tipping bucket gage tip mechanism underestimate snow especially under windy conditions; HADS missing data
- South – more apt to include convective precipitation; less snow
Conclusions

• MPE agreement varies across Midwest
• At higher precipitation rates, MPE underestimates precipitation;
• At lower precipitation rates, MPE overestimates precipitation
• North >44 N latitude, MPE greatly underestimates in winter
• Best estimates everywhere in summer and/or for convective events (except very close to radar)
• County distance from radar in stratiform precipitation and use of HADS gages (typically tipping bucket) in winter results in MPE underestimation
Future

• Polarization will be added to radars in next few years. Information about the shape of drops and sometimes whether frozen or not.

• Polarization will affect should improve radar measurements but unclear by how much.

• Range / height effects will still be present.
MPE, 4x4 cells Interpolated, COOP and CoCoRaHGS
The Community Collaborative Rain Hail and Snow Network (CoCoRaHS)
www.cocorahs.org

- Grassroots - volunteer observers measuring rain, snow, and hail in their communities
- A climatological network with a near real-time component

GOAL – To provide accurate high-quality precipitation data to observers, decision makers and other end-users on a timely basis.

As of July 2010
- 50 states and DC
- More than 5,000 volunteers and growing
- 4,000 precip reports per day

In Illinois during July 2010:
Average of 376 reports per day. Total of 499 observers submitting 11,950 reports.
Placement of your gauge

“Location is the key to good data”
Distance from Radar

- Cone of silence (impact within ~20 km)
- Ground clutter within 26 mi (42 km)
- Measure most precip within 92 mi (150 km)
CHECK:

- Look at light rain vs distance from radar.
- If MPE sees more precipitation than gage – will see less with range because will be from shallower clouds.
All pairs with MPE and GAGavg > 0.25 cm

- Percent MPE within +/- 25% GAGavg
- Sample
- Percent MPE within max & min

- Percent MPE > max
- Percent MPE < min

Number of Gages within Grid Point

Number of Cases

Percent Frequency

Sample

ng=1
ng=2
ng=3
ng=4
ng>4

Percent MPE within max & min

Percent MPE > max

Percent MPE < min

All pairs with MPE and GAGavg > 0.25 cm
This map was compiled using official National Weather Service data and unofficial observations from the Community Collaborative Rain, Hail, and Snow Network (CoCoRaHS).