

## New At-Streamgage Quantiles and Regression Equations for Estimating Peak-Flow Quantiles in Illinois

Illinois Association for Floodplain and Stormwater Management Annual Meeting, March 15, 2023 Mackenzie Marti, Padraic O'Shea, and Tom Over USGS Central Midwest Water Science Center

Cooperator: Illinois Center for Transportation-Illinois Department of Transportation (Project R27-181)

This information is preliminary and is subject to revision. It is being provided to meet the need for timely best science. The information is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the information.

U.S. Department of the Interior U.S. Geological Survey

Photograph by Lindsey Schafer, U.S. Geological Survey



 Flood-frequency analysis critical for water-resource management applications

 Federal guidelines set in Bulletin 17C

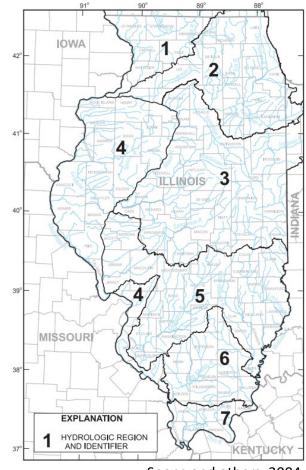
#### Guidelines for Determining Flood Flow Frequency Bulletin 17C

H

Chapter 5 of Section B, Surface Water Book 4, Hydrologic Analysis and Interpretation

≈usrs



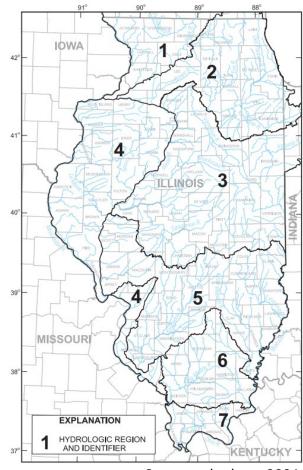

Techniques and Methods 4–B5 Version 1.1, May 2019

U.S. Department of the Interior U.S. Geological Survey



- Previous state-wide flood frequency update and regression equation development was in 2004
  - Through water year (WY) 1999
  - Soong, D.T., Ishii, A.L., Sharpe, J.B., and Avery, C.F., 2004, Estimating flood-peak discharge magnitudes and frequencies for rural streams in Illinois: https://doi.org/10.3133/sir20045103.

- Northeastern IL (Region 2) updated in 2016
  - Through WY 2009
  - Over, T.M., Saito, R.J., Veilleux, A.G., O'Shea, P.S., Sharpe, J.B., Soong, D.T., and Ishii, A.L., 2021, Estimation of peak discharge quantiles for selected annual exceedance probabilities in northeastern Illinois (ver. 3.0, June 2021): https://doi.org/10.3133/sir20165050.

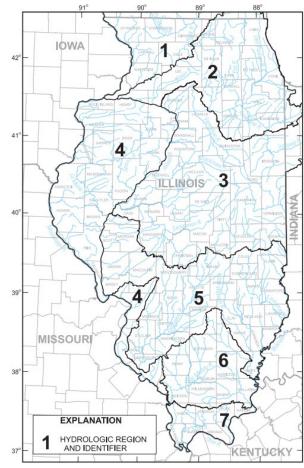



Soong and others, 2004



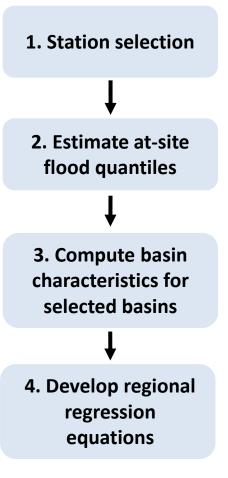
### **Project Goals**

- Update GIS base data to high-resolution (1:24,000) streamlines and DEM (10 m)
- Update at-site flood frequency estimates for selected streamgages in Illinois
  - Using data through WY 2017
  - Using updated Bulletin 17C methods
- Develop new regional regression equations (RREs) for rural regions (outside of Region 2)
- Update Region 2 RREs with updated basin characteristic values and additional years of record
- Update StreamStats with new equations and GIS base data

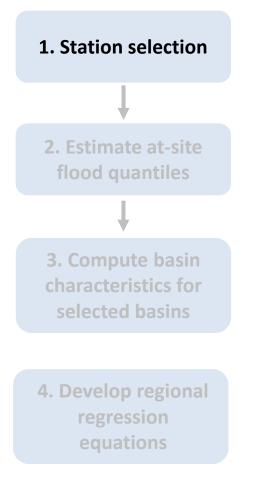



Soong and others, 2004

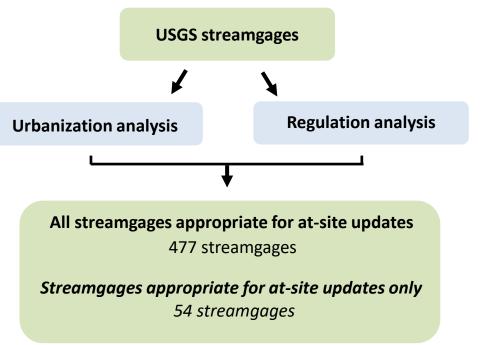


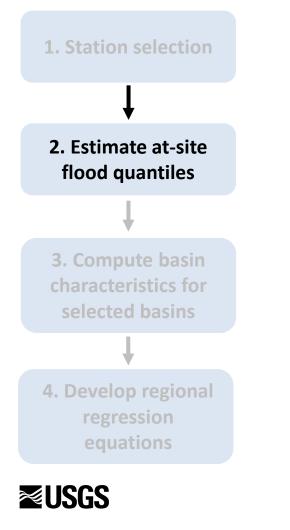

## **Project Goals**

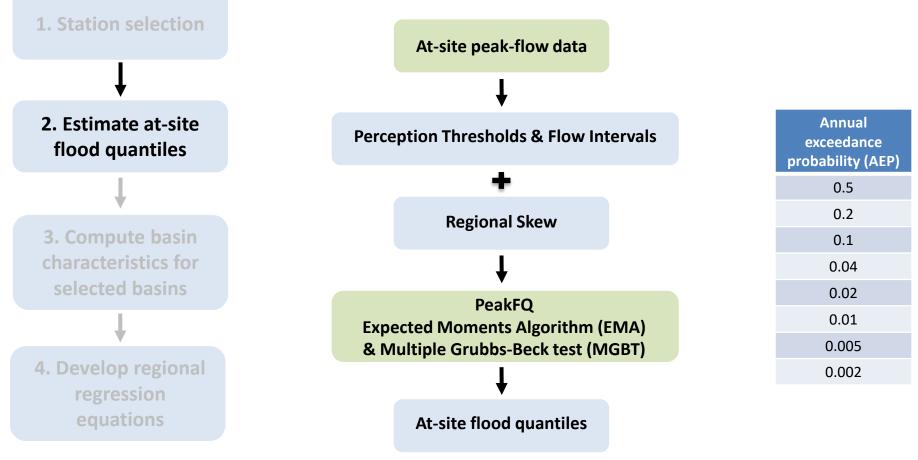
- Update GIS base data to high-resolution (1:24,000) streamlines and DEM (10 m)
- Update at-site flood frequency estimates for selected streamgages in Illinois
  - Using data through WY 2017
  - Using updated Bulletin 17C methods
- Develop new regional regression equations (RREs) for rural regions (outside of Region 2)
- Update Region 2 RREs with updated basin characteristic values and additional years of record
- Update StreamStats with new equations and GIS base data




Soong and others, 2004

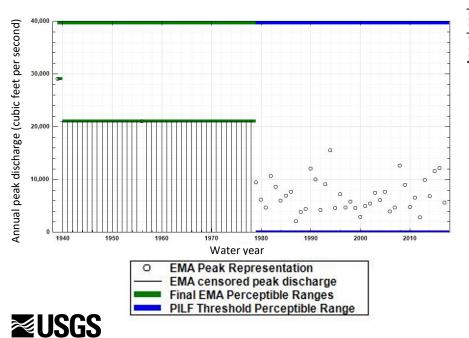


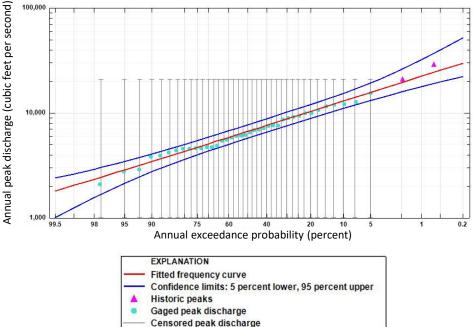



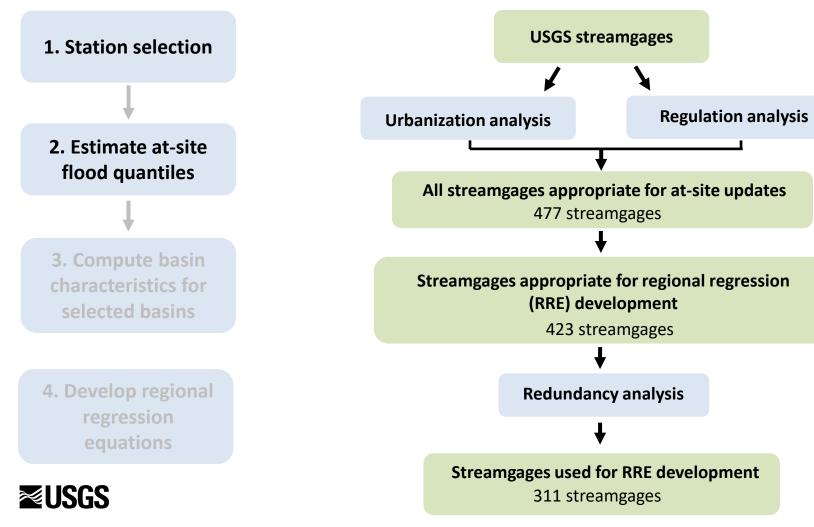








**USGS** 

# 03336645 Middle Fork Vermilion River above Oakwood, IL







### **1. Station selection**

2. Estimate at-site flood quantiles

3. Compute basin characteristics for selected basins

4. Develop regional regression equations



# Region 2

- Use same basin characteristics (BCs) as previous
   2016 report
  - Scientific Investigations Report (SIR) 2016-5050 (https://doi.org/10.3133/sir20165050)
  - Drainage area
  - NLCD\_22\_23\_24: 2016 National Land Cover Database (NLCD) urban fractions
  - DrainageClass1a: sum of fractions of Soil Survey Geographic (SSURGO) fractions "very poorly drained" and "unknown (likely water)"
  - DEM\_1\_0\_P: basin elevation range divided by basin perimeter

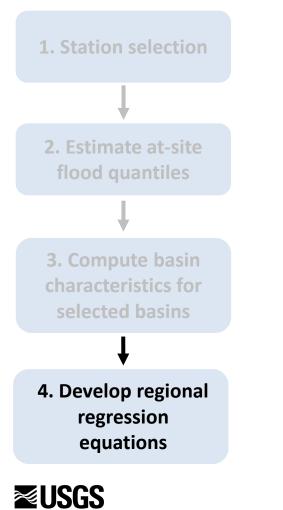


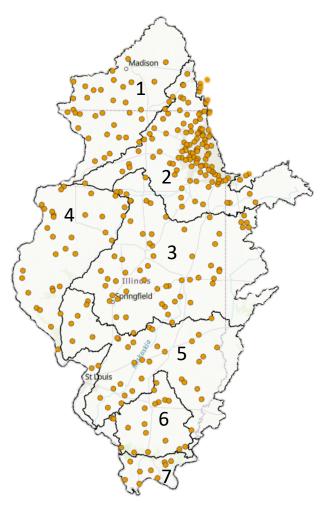
#### **1. Station selection**

# Non-region 2

6

2. Estimate at-site flood quantiles


3. Compute basin characteristics for selected basins


4. Develop regional regression equations

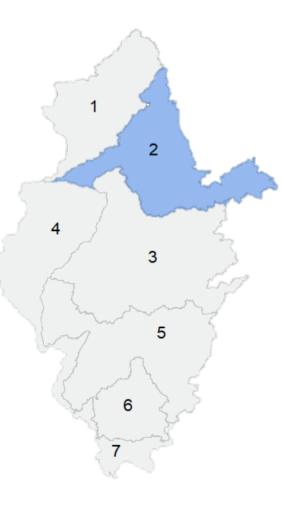


### Computed more than 50 BCs

| Data type    | Example basin characteristics                                         |
|--------------|-----------------------------------------------------------------------|
| Morphometric | Basin drainage area (DA), DEM-based basin slope, mean basin elevation |
| Geology      | Quaternary sediment thickness                                         |
| Land use     | Fraction open water, fraction forest                                  |
| Soils        | Permeability, soil slope, texture permeability index                  |
| Climate      | Seasonal precipitation, precipitation frequency                       |






# Region 2

• Same basin characteristics as previous 2016 report (https://doi.org/10.3133/sir20165050)

$$log_{10}(Q_p) = a_{0,p} + a_{1,p}log_{10}(DA) + a_{2,p}\sqrt{NLCD_{22}_{23}_{24}}$$

+  $a_{3,p}\sqrt{DrainageClass1a}$  +  $a_{4,p}log_{10}(DEM_1_0_P)$ 

where Q = discharge, p = annual exceedance probability,  $a_0$  represents the intercept value, and  $a_{1-4}$  represents the variable coefficient





Selecting models for non-region 2

- 1. Apply search algorithm to find best combination of BCs to predict each quantile in each region
  - Uses ordinary least squares (OLS) regression
  - Produces *many* potential candidate models for each region
- 2. Candidate models that performed best in step 1 are postprocessed using USGS Weighted-Multiple-Linear Regression Program WREG (<u>https://water.usgs.gov/software/WREG/</u>)
  - WREG uses generalized least squares (GLS) regression
  - Those that performed best were selected as the final models



# 1. Selecting candidate models with OLS

- Number of BCs used in each model limited by number of streamgages in region (10-20 streamgages per BC)
- Looked at various metrics (R<sup>2</sup>, correlation between BCs)
- Considered models for single and combined regions
- Picked candidate models for each AEP for each region

| Annual<br>exceedance<br>probability (AEP) |
|-------------------------------------------|
| 0.5                                       |
| 0.2                                       |
| 0.1                                       |
| 0.04                                      |
| 0.02                                      |
| 0.01                                      |
| 0.005                                     |
| 0.002                                     |



# 2. Selecting final models with WREG (GLS)

| Considered models for single and combined regions                                         | Annual<br>exceedance<br>probability (AEP) |
|-------------------------------------------------------------------------------------------|-------------------------------------------|
| <ul> <li>Looked at various metrics (pseudo R<sup>2</sup>, RMSE, variance, VIF)</li> </ul> | 0.5                                       |
| <ul> <li>Considered the physical meaning</li> </ul>                                       | 0.2                                       |
| <ul> <li>Ensured coefficients were statistically significant</li> </ul>                   | 0.1                                       |
| <ul> <li>Considered maps of residuals and leverage and influence statistics</li> </ul>    | 0.04                                      |
| <u>Selected final models</u>                                                              | 0.02                                      |
| <ul> <li>Did not revise or combine regions</li> </ul>                                     | 0.01                                      |
|                                                                                           | 0.005                                     |
|                                                                                           | 0.002                                     |

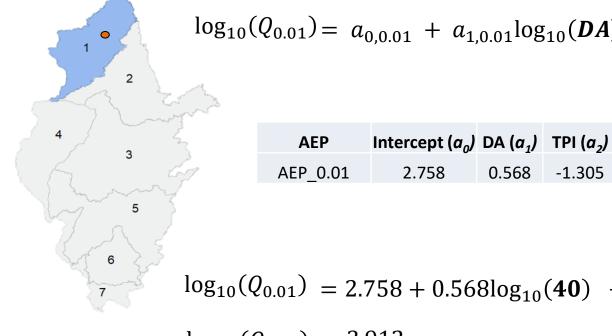


|     | Region | Stations | Model                                                                                                          |  |  |  |  |
|-----|--------|----------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|
|     | 1      | 35       | $log_{10}(Q_p) = a_{0,p} + a_{1,p}log_{10}(\mathbf{D}A) + a_{2,p}(log_{10}(\mathbf{TPI}) - 3.2259)$            |  |  |  |  |
|     | 3      | 60       | $log_{10}(Q_p) = a_{0,p} + a_{1,p}log_{10}(DA) + a_{2,p}(DEM\_slope - 55.329) + a_{3,p}(TPI - 1823.4)/4758.3)$ |  |  |  |  |
| 1°N | 4      | 36       | $log_{10}(Q_p) = a_{0,p} + a_{1,p}log_{10}(DA) + a_{2,p}log_{10}(Soil_Slope)$                                  |  |  |  |  |
|     | 5      | 36       | $log_{10}(Q_p) = a_{0,p} + a_{1,p}log_{10}(\mathbf{DA}) + a_{2,p}(\mathbf{DEM\_Slope} - 55.329)$               |  |  |  |  |

- DA: Drainage area
- **TPI**: Texture permeability index
  - TPI = 100\*sand fraction + 10\*silt fraction + clay fraction
- **DEM\_slope**: land surface slope derived from DEM
- **Soil\_Slope:** average STATSGO soil slope in basin
  - From Wolock, 1997
  - <u>https://pubs.er.usgs.gov/publication/ofr97656</u>



2




| Region | Stations |                                                                   |
|--------|----------|-------------------------------------------------------------------|
| 6      | 16       | $log_{10}(Q_p) = a_{0,p} + a_{1,p}log_{10}(\mathbf{D}\mathbf{A})$ |
| 7      | 9        | $log_{10}(Q_p) = a_{0,p} + a_{1,p}log_{10}(\mathbf{D}\mathbf{A})$ |

• DA: Drainage area



### Region 1 location X, AEP 0.01



$$\log_{10}(Q_{0.01}) = a_{0,0.01} + a_{1,0.01}\log_{10}(\mathbf{DA}) + a_{2,0.01}(\log_{10}(\mathbf{TPI}) - 3.2259)$$

-1.305

| <b>DA:</b> 40 (sq mi)       |
|-----------------------------|
| <b>TPI</b> : 1096 (percent) |

 $\log_{10}(Q_{0.01}) = 2.758 + 0.568\log_{10}(\mathbf{40}) - 1.305(\log_{10}(\mathbf{1096}) - 3.2259)$  $\log_{10}(Q_{0.01}) = 3.912$  $Q_{0.01} = 8,413 \ cfs$ 



Region 1 location X, AEP 0.01 – Urbanization-adjusted peak-flow

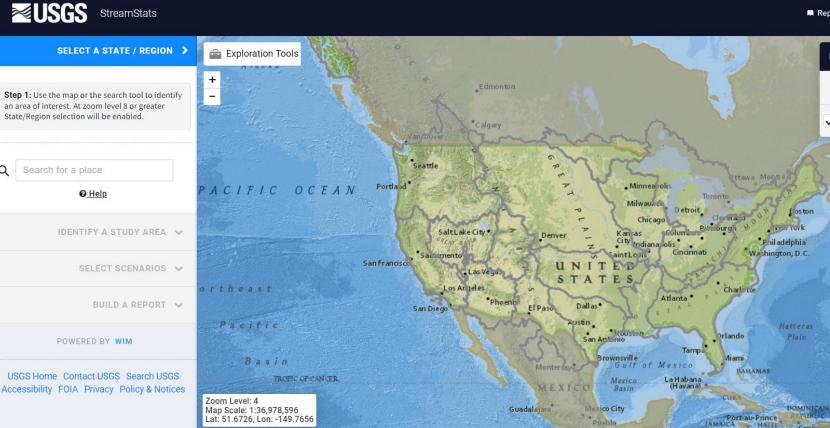
$$\log_{10} Q_{0.01}(U) = \log_{10}(Q_{0.01}) + (b_U)_{0.01}(U - U_0)$$
  
$$\log_{10} Q_{0.01}(U) = \log_{10}(3.912) + (b_U)_{0.01}(U - U_0)$$

where  $b_U$ : Temporal urbanization coefficient, U: Theobald-NLCD urban fraction,  $U_0$ : Baseline (median) urban fraction for Region 1

| AEP      | (b <sub>U</sub> ) <sub>0.01</sub> | U    | U <sub>o</sub> |
|----------|-----------------------------------|------|----------------|
| AEP_0.01 | 0.312                             | 0.12 | 0.0060         |

 $\log_{10} Q_{0.01}(U) = 3.912 + 0.312 * (0.10 - 0.0060)$  $\log_{10} Q_{0.01}(U) = 3.948$  $Q_{0.01}(U) = 8,863 \ cfs$ 




4

2

3

6

### https://streamstats.usgs.gov/ss/





Q

Preliminary Information-Subject to Revision. Not for Citation or Distribution.

Kingston

Santo

About ? Help Report

Base Maps

National Layers

NORTH

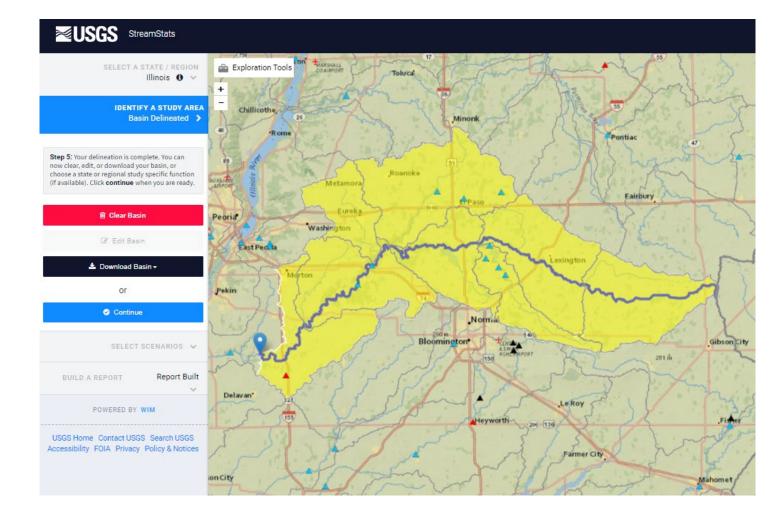
Layers

~

Isbrad

V

ATLAN


North America

Saraasso Sea

TROPIC OF CANCER

UERTO RICO UNITED STATES

Basin





#### StreamStats Terminology

#### Peak-Flow Statistics Flow Report [Region 3 Peak Unadjusted SIR 2004 5103]

| PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other see report) |       |        |       |        |      | rt)  |             |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|-------|--------|------|------|-------------|
| Statistic                                                                                                                                         | Value | Unit   | PII   | Plu    | SE   | ASEp | Equiv. Yrs. |
| 50-percent AEP flood                                                                                                                              | 8880  | ft^3/s | 4780  | 16500  | 39.5 | 39.5 | 2.7         |
| 20-percent AEP flood                                                                                                                              | 15100 | ft^3/s | 8070  | 28300  | 40   | 40   | 3.2         |
| 10-percent AEP flood                                                                                                                              | 19500 | ft^3/s | 10200 | 37300  | 41.6 | 41.6 | 3.9         |
| 4-percent AEP flood                                                                                                                               | 25200 | ft^3/s | 12700 | 50000  | 44.2 | 44.2 | 4.7         |
| 2-percent AEP flood                                                                                                                               | 29500 | ft^3/s | 14400 | 60500  | 46.6 | 46.6 | 5.2         |
| 1-percent AEP flood                                                                                                                               | 33800 | ft^3/s | 15900 | 71600  | 49   | 49   | 5.6         |
| 0.2-percent AEP flood                                                                                                                             | 44000 | ft^3/s | 19200 | 101000 | 54.9 | 54.9 | 6.2         |

Peak-Flow Statistics Flow Report [Region 3 Peak Adjusted Using SIR 2016 5050]

| Statistic                   | Value | Unit   |
|-----------------------------|-------|--------|
| Urban 50-percent AEP flood  | 9220  | ft^3/s |
| Urban 20-Percent AEP flood  | 15600 | ft^3/s |
| Urban 10-percent AEP flood  | 20000 | ft^3/s |
| Urban 4-percent AEP flood   | 25900 | ft^3/s |
| Urban 2-percent AEP flood   | 30300 | ft^3/s |
| Urban 1-percent AEP flood   | 34600 | ft^3/s |
| Urban 0.2-percent AEP flood | 45000 | ft^3/s |



# Report and datasets

- In review, publication expected fall 2023
- Data releases will be available on ScienceBase
  - <u>https://www.sciencebase.gov/catalog/</u>

StreamStats

- Updated DEM and streamlines
- New basin characteristic layers
- Updated at-site estimates
- Updated peak-flow statistics using new equations
- Expected November 2023



d

CIVIL ENGINEERING STUDIES Illinois Center for Transportation Series No. xxxxxx [ICT will provide UILU-ENG-200x:xxxxx [ICT will provide] ISSN: 0197-9191

Estimating Peak-flow Quantiles for Selected Annual Exceedance Probabilities in Illinois Prepared By Thomas M. Over

> Mackenzie K. Marti Padraic S. O'Shea Jennifer B. Sharpe U.S. Geological Survey

Research Report No. FHWA-ICT-xx-xxx [ICT will provide]

A report of the findings of ICT PROJECT R27-181 Updated and Unified StreamStats Peak Discharges for Streams of Illinois

https://doi.org/######### (ICT will provide)

Illinois Center for Transportation



# **Questions?**

Tom Over, tmover@usgs.gov Padraic O'Shea poshea@usgs.gov Mackenzie Marti, mmarti@usgs.gov

U.S. Department of the Interior U.S. Geological Survey

Photograph by Lindsey Schafer, U.S. Geological Survey