De-Bugging a HEC-RAS Unsteady Flow Model

Presented by:
Jennifer Maercklein, P.E., CFM
V3 Companies
Presentation Agenda

- Goals
- Model Errors Before Simulation Begins
- De-bugging Initial Conditions
- De-bugging Runtime Errors
- Resources for Help
- Questions
Presentation Goals

• Tips to get started with de-bugging
 – Useful HEC-RAS tools for debugging
 – Tips to find sources of error

• De-bugging ideas presented here do not represent an exhaustive list of de-bugging techniques

• Presentation Assumptions
 – Familiarity with HEC-RAS
 – Familiarity with Unsteady Flow Modeling
Model Errors Before Simulation Begins

- Model Errors – Before Simulation Begins
 - Cross Section Location Errors
 - Unsteady Flow Inflow Errors
Model Errors Before Simulation Begins

- Cross Section Locations

- Two XS d/s of each structure
- Two XS between internal boundary and confluence
Model Errors Before Simulation Begins

- Unsteady Flow Inflow Errors

 - Uniform Lateral Inflow
 - Can’t Span Structures
 - Uniform Lateral Inflow
 - Can’t End at D/S End of Reach
De-bugging Initial Conditions

- Model crashes at beginning of simulation
- Problem with Initial Conditions
 - Flow too low, reaches go “dry”
 - Flow u/s of confluence ≠ flow d/s
 - Supercritical
- Computational Time Step
De-bugging Initial Conditions

- Initial flow too low, reaches go “dry”
- Animate Profile
De-bugging Initial Conditions

- Keep Reaches “Wet”
 - Check Initial Flows
 - Check Minimum Flows
 - Add Dummy Flow to Emergency/Diversion Channels
De-bugging Initial Conditions

- Flow upstream of confluence not equal to flow downstream of confluence
De-bugging Initial Conditions

- Supercritical Flow, Model Unable To Converge To Solution
- Review Summary Output Tables
De-bugging Initial Conditions

• Computational Parameters
 – May need shorter computational time step to allow HEC-RAS to converge
 – May need shorter output time step to enable user to see results at time of failure
De-bugging Runtime Errors

- Identify Source of Model Crashes
 - Note time and location of model crash
 - Find problematic XS and consider HEC-RAS suggestions

- Heed Model Extrapolation Warnings
De-bugging Runtime Errors

- Identify Source of Model Crashes
 - Note time and location of model crash

 Matrix Solution Failed
 Minimum error exceeds allowable tolerance at 12SEP2008 0214
 NBCR West Fork US N Navy 23529.47

- Review detailed output tables
- Find problematic cross section and consider HEC-RAS suggestions
- Often, just need more cross sections
De-bugging Runtime Errors

• Heed Model Extrapolation Warnings
 – Adjust Hydraulic Table (HTab) Parameters
 – Adjust Storage Ratings
Summary

• Start with Good XS Locations, Good Unsteady Flow Input Locations

• Use HEC-RAS Graphical & Tabular Tools
 – Review .txt file to find time & location of error
 – Animate Profile
 – Review Summary Output Tables
 – Review Detailed Output Tables

• Pay Attention to:
 – Initial Flows
 – Supercritical Flow
 – Cross Section Spacing

• Consider HEC-RAS Warnings
Resources for Help

- Resources for Help
 - HEC-RAS Help
 - ASCE HEC-RAS Unsteady Flow Class and/or Class Manual
Model Runs! Success!

Questions?