

Lake Springfield's Spaulding Dam

How does it work? What if it doesn't?

Scott M. Arends, P.E., CFM IAFSM 2017 Annual Conference

How does it work?

Introduction and Background

Lake Springfield

- > Location: Springfield, IL
- Owned by City of Springfield
- > Built in early 1930's
- 4,200 acres at normal pool
- > Purpose
 - Cooling water for power generation station
 - Community water supply
 - > Recreation

Introduction and Background

Spaulding Dam

- Earth Filled Dam 1,600 ft long
- Gated Spillway (5 gates) 265 ft long
- > Public Roadway on dam
- Historic Bridge over spillway
- Roadway Bridge over downstream spillway slab
- Class I high-hazard potential

Previous Gates – Floating Drum Gates

- Five spillway gates
- > Circa 1932 construction
- > 45 ft long by 8 ft high
- > Sealed steel drum gates
- Floats on water within float chamber in gate bay
- Inlet/Outlet piping control water level in float chamber
- No mechanical gate lifting equipment

Replacement Gate Alternatives

- Alt 1a Hinged Crest Gate Operators Below
- Alt 1b Hinged Crest Gate Operators Above (Two locations Alt 1b1 and Alt 1b2)
- Alt 1c Hinged Crest Gate Bascule Type
- Alt 2 Vertical Lift Gate
- Alt 3 Pneumatically-Operated, Hinged-Leaf Gate
- Alt 4 Rehabilitate Existing Gates

Scoring Matrix

		Gate Type											
	Weighting Factor	Alternative 1A Conventional Hinged Crest Gate Operators Below		Alternative 1B Conventional Hinged Crest Gate Operators Above		Alternative 1C Bascule-Type Hinged Crest Gate		Alternative 2 Vertical Lift Gate		Alternative 3 Obermeyer Steel- Faced Rubber Dam		Alternative 4 Rehabilitate & Modify Existing Drum Gate	
Criteria	We	Raw	Wt'd	Raw	Wt'd	Raw	Wt'd	Raw	Wt'd	Raw	Wt'd	Raw	Wt'd
1. First Cost	2.5	3	7.5	3	7.5	2.5	6.25	2	5	4	10	4	10
Fail safe, If they fail, loss of lake level will not be an immediate issue	2.5	4	10	4	10	4	10	4	10	4	10	3.5	8.75
Independent of existing drain piping for operation	1	5	5	5	5	5	5	3.5	3.5	5	5	3.5	3.5
Ability to be remotely controlled and operated	1	5	5	5	5	5	5	5	5	5	5	5	5
5. Future maintenance	1.5	3	4.5	4	6	4	3	4	6	2	3	3	4.5
Hydraulic efficiency and fine water control	2	4	8	4	8	4	8	4	8	2	4	5	10
7. Sediment/debris accumulation	1.5	4	6	4.5	6.75	5	7.5	2	3	4	6	3	4.5
8. Aesthetics and Historic Preservation Concerns	1	3	3	2.5	2.5	3	3	2	2	3	3	5	5
9. Constructability	3	3	9	2	6	2	6	2	6	4	12	2	6
10. Reliability	2.5	3	7.5	3	7.5	3	7.5	3	7.5	3	7.5	3	7.5
TOTAL WITH FIRST COST			65.5		64.25		61.25		56		65.5		64.75
TOTAL WITHOUT FIRST COST			58		56.75		55		51		55.5		54.75

Design Development

- Limit concrete demolition and replace one gate at a time
- ➤ Permitting authorities
 - >IHPA, USACE, IEPA, IDNR
- Limit visual changes to structure and maintain a "historic time capsule"
- Update Emergency Action Plan

Base and Alternate Bids

Awarded Contract

- Base Bid + Alternate Bids 1 through 3 \$5.4M
- General Contractor: J.F. Brennan Marine Professionals, LaCrosse, Wisconsin
- Subcontractors:
 - Gate Supplier: Rodney Hunt Company, Orange, Massachusetts
 - Sitework: Vancil Contracting, Springfield, Illinois
 - Electrical: Anderson Electric, Springfield, Illinois
 - Hydraulic Piping and Setup: Sarco Hydraulics, Litchfield, Illinois
 - Concrete Cutting and Coring: Minneapolis Concrete Sawing, Minneapolis, Minnesota
 - Asbestos Abatement: Midwest Asbestos Abatement, Chicago, Illinois

Bulkhead, Dewatering, and Demolition

"What's the big deal? We've picked up chains heavier than this!"

Mechanical Systems

Schematic Routing of Hydraulic Supply and Return Lines

Concrete Placement

Redundant Gate Support

Routing Hydraulic Lines

Commissioning and Training

What if work?

- ➤ Do Dams Fail?
- >What is an EAP & why is one needed?
- ➤ How do we alert the public?
- ➤ How do we quantify the risks?
- ➤ How can modern technology help?

Dams Do Fail Hartwick Dam - Lake Delhi, Iowa

Maguoketa River

Orlan Love/The Gazette

Hartwick Dam failed on July 24, 2010, due to a period of about 10 in. of rainfall in 12-hours. River levels upstream of the dam had reached 10 ft above flood stage prior to the failure.

Mark Benischek/SourceMedia Group News

Why do you need an EAP?

- ➤ Emergency Planning
- ➤ Resource Allocation
- > Evacuation

Inundation Mapping

Study Watershed > 5,000 sq. miles

Hydrography – stream network

Reach to be modeled extracted from Hydrography

Digital Soils Data - Hydrologic Soils Group

Digital Land Cover/Land Use Data

Digital Soils/Land Data to Composite SCS Curve Numbers

Build HEC-HMS Hydrology model

Building a Dam Breach Model using HEC-RAS

Lake Springfield's Dams

- Lake area 4200 acres
- Watershed 265- sq miles.
- > 57 Miles of Shoreline
- 735 Residences.
- Service territory is more than 160,000 people.

Reaches (Rivers to be modeled)

Cross-Sections

Stream Crossings

All Layers are Complete – Ready to Export to HEC-RAS

HEC-RAS Model - schematic

Cross-Sections based on LiDAR (Light Detection And Ranging)

Dam Breach Model Results

Need Inundation Maps to Identify Hazard Areas

Flood Depth

Inundation Area

Dam Breach Impact Area

Inundation Area on USGS Topographic Map

Inundation Area on Orthophoto

Identify Structures at Risk

Communities at Risk

Add User Valued Information

