Village of Downers Grove
McCollum Park Flood Control Facility
Case Study

Presented by:
Jennifer Maercklein, P.E., CFM
V3 Companies, Ltd.
Presentation Agenda

• Background
• Project Overview
• Hydraulic Design Considerations
• Park Design Considerations
• Challenges
• Results
• Questions?
Background

• Downers Grove
 – Western Chicago Suburb
 – Founded 1832
 – 175 years of development
 – Only 30 years “regulated”

• 2005 Stormwater Master Plan
 – Recommended developing a Watershed Infrastructure Improvement Plan
 • Study and identify stormwater system deficiencies
 • Guide future infrastructure improvements
 – WIIP completed in 2007
Background

- WIIP identified flooding problems Village-wide
- Several problems identified in “subbasin PR B” of Prentiss Creek Watershed
- Street & yard flooding in PR B resulting from:
 - Undersized Sewers
 - Backpitched Sewers
 - Sedimentation
 - Lack of Drainage System
Background

- WIIP recommendations for PR B:

- Upsize Sewer, Eliminate Backpitched Sewer
- Reconstruct with Curb & Gutter
- Upsize Sewer, Eliminate Backpitched Sewer
- Construct Detention Pond
Background

• Needed to find location for new flood storage basin in highly developed (suburban) area
• McCollum Park selected
• Intergovernmental Agreement formed between Village and Park District
 – Village’s Goal: Flood Storage
 – Park District’s Goal: Park Improvements and Amenities
Project Overview

- Multi-Purpose Basin
 - Flood control
 - Stormwater detention of PD’s future improvements
 - Full size regulation soccer field

- Storm sewer modifications
Project Overview

• Park amenities
 – Pedestrian path modifications
 – Relocation of basketball and sand volleyball courts
 – Soccer Field
 • Underdrain
 • Irrigation
 • Lighting
• No “Special Management Areas”
Hydraulic Design Considerations

• Adjacent to 67th Street Trunk Sewer
 – 60-inch storm sewer
 – 10-year capacity
 – Surcharged sewer results in upstream flooding
Hydraulic Design Considerations

- 36-inch overflow pipe at trunk sewer crown
 - Delivers flow > 10-yr into basin
 - Reduces upstream flooding in moderate to large storm events
 - Keeps soccer field dry during small storms
- Backflow preventer on outlet pipe
Park Design Considerations

- **Village / Park District Coordination**
 - Facilitate drainage during storms (incl small events)

- **Underdrain System**
 - Moisture sensors for water conservation

- **Irrigation System**
 - Full size regulation soccer field
Park Design Considerations

- Sand Volleyball, Basketball Courts relocated
- Pedestrian Path improvements
- Lighting
- Bleachers
- Low retaining walls for spectator seating
Challenges

• Layout
 – Existing physical constraints
 – Soccer field size and setbacks

• Grading
 – Grades high enough for underdrain system
 – Grades steep enough for drainage
 – Grades low enough to achieve storage req’ts
Results

- XP-SWMM Dynamic Modeling
- 15.8 ac-ft flood storage
- Expected flood reductions
 - Up to 1.7 ft in PR614
 - Up to 0.6 ft in PR600
- Improved park amenities
Questions?