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Summary

Climate Change

Effect on Flood Frequency
A few Anecdotes

What Now?



P.J. Webster et al., Science 309,

1844 -1846 (2005)

= The Earth’s Atmosphere
and Oceans are Warming

Summer SST by Ocean Basin
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J.J. McCarthy Science 326, 1646-

1655 (2009)
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Defining Climate Change

Air Temperatures are Up
Ocean Temperatures are Up

All kinds of other effects
« Animal Migrations

e Extinctions

e Lake freezel/thaw

* Rainfall Patterns

o Storm Intensity

 Sea Level Rise



Sea Level Is Rising

Mean Annual Sea Level at Galveston Texas
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P.J. Webster et al.,

Science 309, 1844 -1846 g20052
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Hurricane Frequency iIs Increasing

= Or not

Report: Tropic'al cyclon

activity at 30-year low ‘%ﬂ

By Oren Dorell
USA TODAY

The past two years have seen a “re-
markable” downturn in hurricane activity,
contradicting predictions of more storms,
researchers at Florida State University say.

The 2007 and 2008 hurricane seasons
had the least tropical activity in the North-
ern Hemisphere in 30 vears, according to
Ryan Mate, co-author of a report on Glob-
al Tropical Cyclone Activity,

“Even though North Atlantic hurricane
activity was-expectedly above normal, the
Western and Eastern Pacific basins have
produced considerably fewer than normal
typhoons and hurricanes,” he said.

Maue's results dovetail with other re-
search suggesting hurricanes are variable
and unconnected to global warming pre-
dictions, said Stan Goldenberg, a hurri-
cane researcher with the National Oceanic
and Atmospheric Administration,

“The simplistic notion that warmer
oceans from global warming automaically
Iead to more frequent and or stronger hu-
ricanes has not been verified,” said Gold-
enberg, whose research points to periods
of high and low hurricane activity that last
several decades each,

Maue used a measurement called Accu-
mulated Cyclone Energy (ACE), which
combines a storm's duration and its wind
speed in six-hour intervals. The years 2007
and 2008 had among the lowest ACE mea-
surements since reliable global satellite
fata was first available three decades ago.

Northern Hemisphere activity in 2006
was close to average, and the previous two
pears, 2004 and 2005, which included
Hurricanes Katrina and Rita, saw among

: /e
the highest numbers on record. !

Active seasons in one beean tend to be
accompanied by quiet ones in the other,
Maue said, When the Pacific is cooler, as it
is now, the Atlantic has slower winds aloft,
which creates more favorable conditions
for hurricanes,

“It tells you that from year to year you
have large swings of activity" said Maue,
who plans to present his work next month
at a meeting of the American Geophysical
Union in San Francisco. “If you want to find
a global warming signal in all that data it’s
generally going to be rather small.” |

Kevin ‘Trenbertl, a lead author of the |
2007 Intergovernmental Panel on Climate
Change assessment, was among several
climatologists who made such claims. He
said in 2004 that the intense hurricane
seasnn that year was “a harbinger of the
future.” His prediction prompted the res-
ignation from the panel of Chris Landsea,
science and operations officer at NOAA's
National Hurricane Center, who said there
was no basis to make such a prediction,

Trenberth said in response to the latest
study that hurricanes can be measured in |
different ways and by some measures ac-
tivity is high. “What we expect on a theo-
retical basis is for duration to increase as
well as size ... but there could be fewer
storms,” Trenberth said.

This year's Morth Atlantic hurricane sea-
501 set some records, according to Weath-
er Underground, a forecasting site. Tropical
Storm Bertha never made landfall but its
13-day run was a record for the month of
July. Tropical Storm Fay in August made
landfall in Florida a record four times, and
ranked among the four top rainmakers
since record keeping began in 1950,




Defining Climate Change

Given Warmer Atmosphere and Oceans
Hydrologic Cycle is accelerated

More water exists in vapor phase

More precipitable moisture

More Rain in places where it rains now
More heavy rain?



Science Vol 319, p. 573, 1 February 2008

CLIMATE CHANGE

Stationarity Is Dead:
Whither Water Management?

P. C.D. Milly,"* Julio Betancourt,” Malin Falkenmark,* Robert M. Hirsch,* Zbigniew W.
Kundzewicz,” Dennis P. Lettenmaier,” Ronald J. Stouffer’



What does Stationarity mean?

Stationarity Is a consistency of a time series over time. At a
minimum, fixed Mean and Variance. Like here on the
Milwaukee River
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Definition of Stationarity

« A random process y=f(X) is strict-sense stationary if the joint
distribution of any set of samples does not depend on the
sample's placement. Consequently, first order cumulative
distribution functions, e.g., mean and variance, of y are
constant. Furthermore, second order cumulative distribution
functions (such as autocorrelation and autocovariance) depend
only on the distance in placement, x1-x2. For example, a
Gaussian process is strict-sense stationary since it is completely
specified by its mean and covariance function.

 If the mean is constant and the autocovariance is a function that
depends only on the distance in placement, then we call the
data wide-sense stationary or simply stationary. Strict-sense
stationary implies wide-sense stationary.
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Why Is it important?

Flood frequency/ flood risk is usually expressed by:

Q,=my + Ks,

Q,, = n-year flood quantile
m, = mean annual flood
Sq = standard deviation

K = factor based on distribution

Procedure assumes Stationary annual floods
A=COM



Traditional FFA

4000

3500

3000

2500

(cfs)

2000

Flovw

1500

To0n

500

Salt Creek at Western Springs
Flow Frequency Fit to LP3 Distribution

B R o R R

RARABIEAEEEE b AR b iR o e

EXIEE R R

Recurrence Interval (Years)

10040

AZCOM



Change In Mean
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ncrease In variance
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Flood Estimates: How Good Are They?
Ray K. Linsley, Water Resources Research 22:9,
August 1986

TABLE 1. Efect of Error in Estimated Flood Peaks on Estimated
Return Period ufa Fl::-m.!

Actual Return Period, :r:an

Error of —
Peak Flow, 10-Year Intended 50-Year Intended 100-Year lnl..:mlpd
B Return Period Reiurn Penod Return Penod
+ i} ad 320 LEEIES
+ 30 34 125 &0
+ 20 24 | 20 240
i 10 19 25 1]
- 10 7 23 30
~ 20 5 15 23
- 30 3 9 L3

— 4l 2 3 [

Tahle assumes extreme value distribution and a coeflicient of var-
alion of 0.5



Milwaukee River at Milwaukee
Historical Annual Floods 1915-2007
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Milwaukee River at Milwaukee
Historical Annual Floods 1915-2007
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DuPage River at Shorewood
Historical Annual Floods 1941-2008
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DuPage River at Shorewood
Historical Annual Floods 1941-2008

20000
18000
16000
14000
12000
10000

8000

Maximum Flow (cfs)

6000

1940 1950 1960 1970 1980 1990 2000 2010

AZCOM



Menomonee River at Milwaukee
Historical Annual Floods 1962-2007
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Menomonee River at Milwaukee
Historical Annual Floods 1962-2007
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Menomonee River at Milwaukee
Historical Annual Floods 1962-2007
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Quantifying Climate Change —
Use GCMs?

- 1 | I ]
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From “Stationarity is Dead” by Milly et al. 2008



Quantifying Climate Change —
Use GCMs?

= Global Climate Models (GCM) ~ MODEL PERIOD TYPE ALEVEL
* Choice of Model
* Choice of Scenario
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Fig. 5. Actual CO2 emissions versus IPCC scenarios
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Assessing Climate Change

18.0

Lake Michigan-Huron

Lake LeJleI FALLS

144

10.8

.
no

0.0 6

Change in Temperature (°F)
w
(0))

Lake Lev|

el RISES

=10 -5 0

5

10

Percent Change in Precipitation

[[] Relative Level INCREASE

15 20

O Relative Level DECREASE




R. P. Allan et al., Science 321,
1481 -1484 (2008)
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R. P. Allan et al., Science 321,
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Kunkel et al., Journal of Climate
12:2515-27 (1999)
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The Black Swan: The Impact of the
Highly Improbable

By Nassim Nicholas Taleb

Random House, 2007

What are Black Swans?

*Events of great impact/conseguences
Unexpected

*Should have seen it coming (had all the
warning signs)

AZCOM



Chicago O‘Hare: September 13, 2008 — 6.64 inches
August 14, 1987 — 6.49 inches

O’Hare Airport September 13 2008




Baraboo River at Baraboo, Wisconsin
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Baraboo River at Baraboo, Wisconsin
Baraboo River June 8, 2008 — 18,100 cfs
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Baraboo River
June 8, 2008




Marble Falls, TX —June 28, 2007

16 inches of rain In 6 hours
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Stationarity is not dead, but it's In deep,

deeE trouble.

= The profession(s) are not
prepared to manage design
risk in the face of changing
hydrology.
e Changes are not
understood
* No uniform/accepted
techniques for
frequency analysis
« GCM'’s aren’t ready to
replace historical
records




Stationarity is not dead, but it's In deep,

deep trouble.

= Immediate need to revise
the practice of risk-based
design in Water Resources
Engineering




Science Vol 319, p. 573,
1 February 2008

Stationarity Is Dead:
Whither Water Management?

P. C.D.Milly," Julio Betancourt, Malin Falkenmark,? Robert M. Hirsch,* Zbigniew W,
Kundzewicz,” Dennis P. Lettenmaier,” Ronald J. Stouffer’

Proposed Solution — nonstationary probabilistic models



Possible Solutions

GCM — Technology not ready but improving
Watershed Modeling — Technology is Solid

Proposed Solution - use available data mining tools to
develop comprehensive watershed simulation models
Use Coupled Hydrologic/Hydraulic models to quantify
climatic uncertainty

Examples:

« DuPage County lllinois
e Cedric David (UT Austin)



Nonstationary Statistics?

Current Practice

. . Flood Flood -
H'letorécal Frequency Elevations [;/?Slgr'] o
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A Better Process — DuPage Approach

D : -

. Continuous Continuous
Slmglated Hydrology Hydraulic
Rainfall Model Model

J

Slmulated Flood Flood Design or
Historical Frequency : :
Floods Analysis Flevations Mapping




Proposed Modeling Approach

Estimate local rainfall changes due to global warming
Intensity, Frequency

Prepare a stochastic rainfall model

Build a comprehensive watershed model leveraging GIS

technology

Generate synthetic streamflow records at locations of

Interest throughout the watershed

Use stationary statistical analysis to estimate flood

guantiles



Alternatively...

) Event
Event
Sampled Hydraulic
Rainfall Hydrology
Model Model
y /
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Discussion
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Thank You

Eric.loucks@aecom.com
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