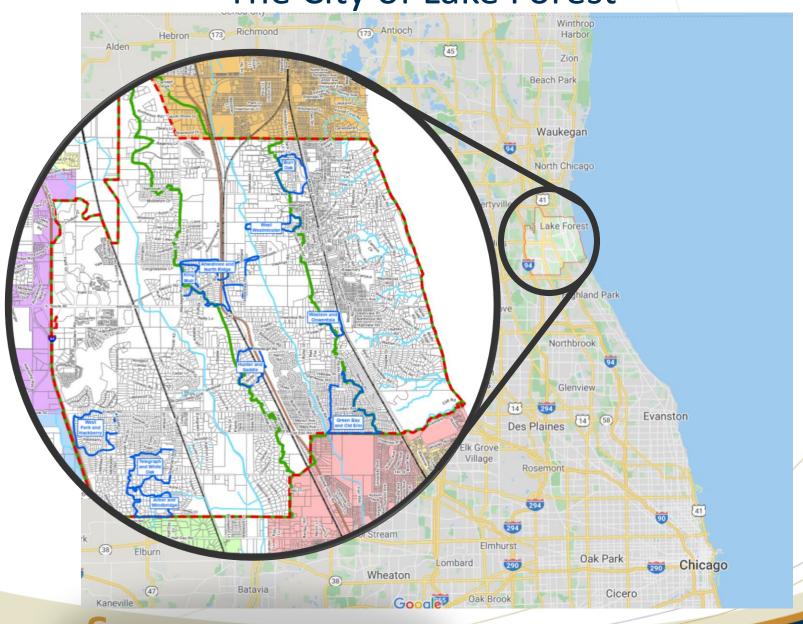
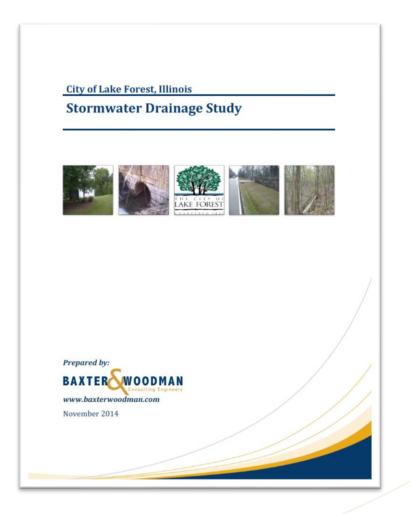

The City of Lake Forest

Bulletin 70 Stormwater Masterplan
Updates – Lake Forest Case Study
Matt Moffitt, P.E., CFM, CPESC



The City of Lake Forest

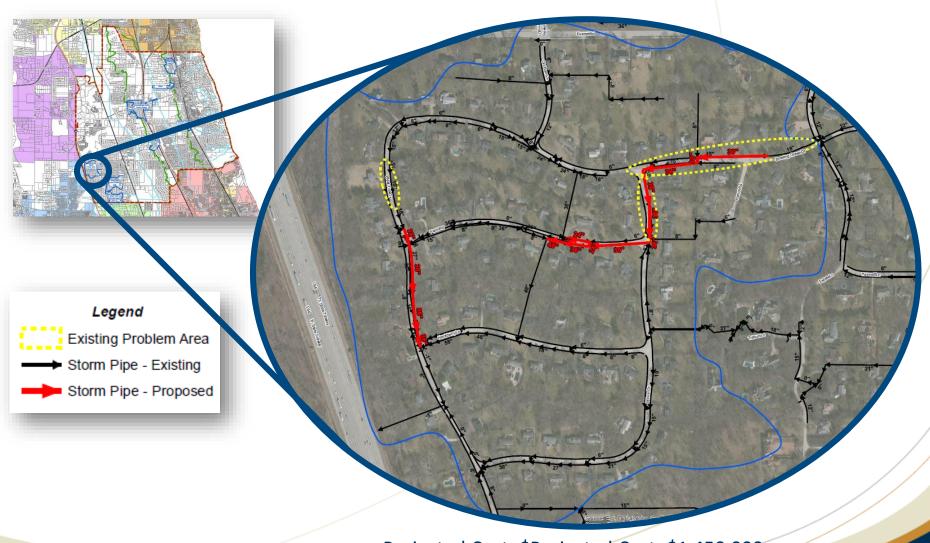


The City of Lake Forest

2013 Stormwater Masterplan

Criteria

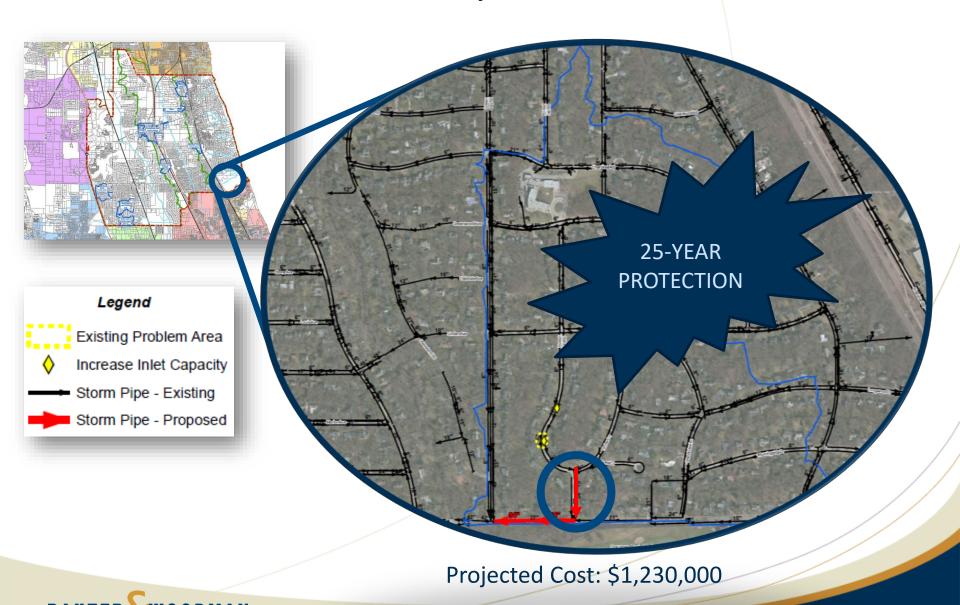
- New XPSWMM Model
- 15" Pipes and Larger
- 1' Contours
- Tail-Water Sensitivity Analysis
- Critical Duration Analysis
- Calibration to experienced storm events:
 - May 13, 2010 (2.19"/6hrs)
 - April 17-18, 2013 (4.08"/24hrs)



Prioritized Storm Sewer Improvements

				\		
		Structure	Street	Yard	Other	Probable Cost
	Project Title	Flooding*	Flooding*	Flooding*	Factors	(2014 \$)
	Arbor and Windridge Study Area - COMPLETE		14	4		-
1	West Fork and Hackberry Study Area	4	196	7	Х	\$1,450,000
2a	Telegraph and White Oak Study Area - Telegraph Road		58	7		\$350,000
2b	Telegraph and White Oak Study Area - Wild Rose/White Oak		58	7		\$910,000
3a	West Westminster Study Area – West End		87	4		\$910,000
3b	West Westminster Study Area – East End		87	4		\$940,000
4	Green Bay and Old Elm Study Area	2	10	4	X	\$790,000
5a	Burr Oak Study Area - East of Western Avenue		36	3		\$740,000
5b	Burr Oak Study Area - West of Western Avenue		36	3		\$880,000
6a	Hunter and Saddle Study Area – Hunter and Saddle		25	4		\$550,000
6b	Hunter and Saddle Study Area - Bridle		25	4		\$170,000
7	Western and Onwentsia Study Area		100			\$300,000
8	King Muir Study Area		16	3		\$950,000
9a	Ahwahnee and North Ridge Study Area – Northeast		103	40		\$1,450,000
9b	Ahwahnee and North Ridge Study Area – East		103	40		\$1,760,000
9с	Ahwahnee and North Ridge Study Area - West		103	40		\$2,740,000
*	Indicates an estimated number for the entire study area					\$14,890,000

COMPLETED – West Fork and Hackberry



COMPLETED - Green Bay and Old Elm

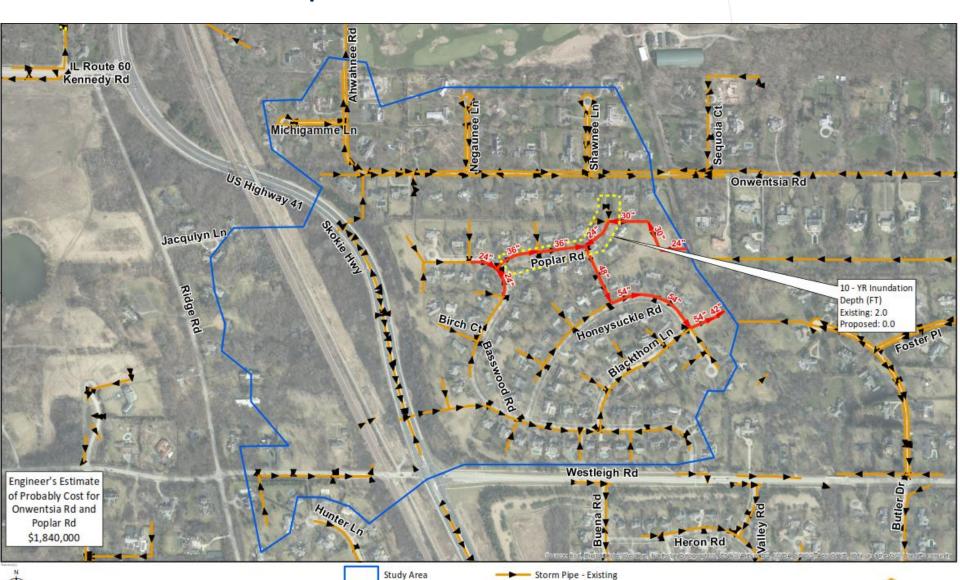
COMPLETED - Green Bay and Old Elm

2019 Stormwater Masterplan Update

- Quick Update (\$10k NTE)
- Reassess each priority area
- Some "problem areas" changed, based on recent complaints (or lack of)
- Utilize Bulletin 70 (2019) rainfall data

Recommendations – Prioritization Schedule

	Weighted Properties Benefitting	Project Cost (2019 dollars)	Cost per Properties Benefitting	Ranking
Burr Oak Road	71	\$3,400,000	\$47,887	1
Ahwahnee Road	40	\$1,920,000	\$48,000	2
Onwentsia Road & Poplar Road	24.4	\$1,840,000	\$75,410	3 /
Western Avenue & Onwentsia Road	5	\$530,000	\$106,000	4 /
Telegraph Road & White Oak Road	14.5	\$2,060,000	\$142,069	/ 5
Gage Lane	15.5	\$2,480,000	\$160,000	6



Recommendations – Prioritization Schedule

	Project Cost (2014 Dollars)	Project Cost (2019 Dollars)
Burr Oak Road	\$1,620,000	\$3,400,000
Ahwahnee Road	\$1,760,000	\$1,920,000
Onwentsia Road & Poplar Road	N/A	\$1,840,000
Western Avenue & Onwentsia Road	\$300,000	\$530,000
Telegraph Road & White Oak Road	\$1,260,000	\$2,060,000
Gage Lane	N/A	\$2,480,000

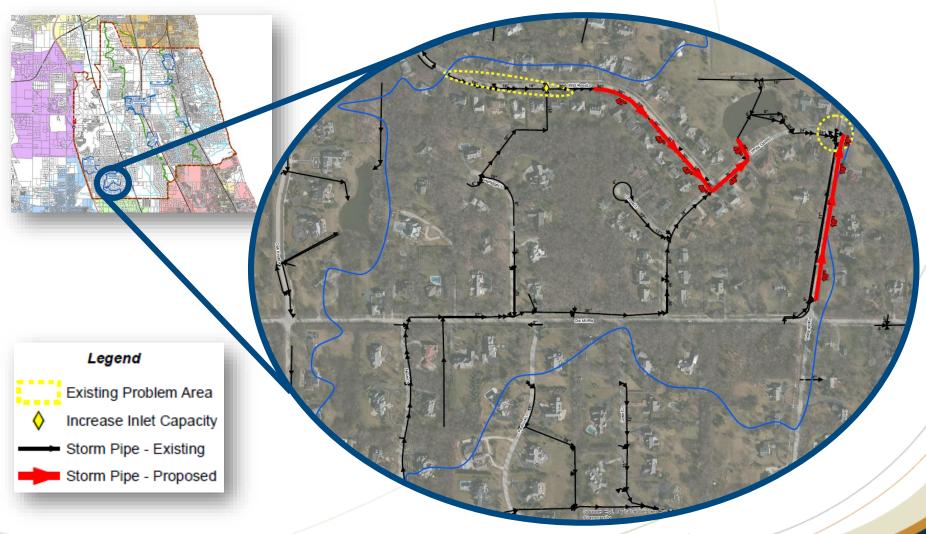
2019 Recommendation (NEW) – Onwentsia/Poplar

Existing Problem Area

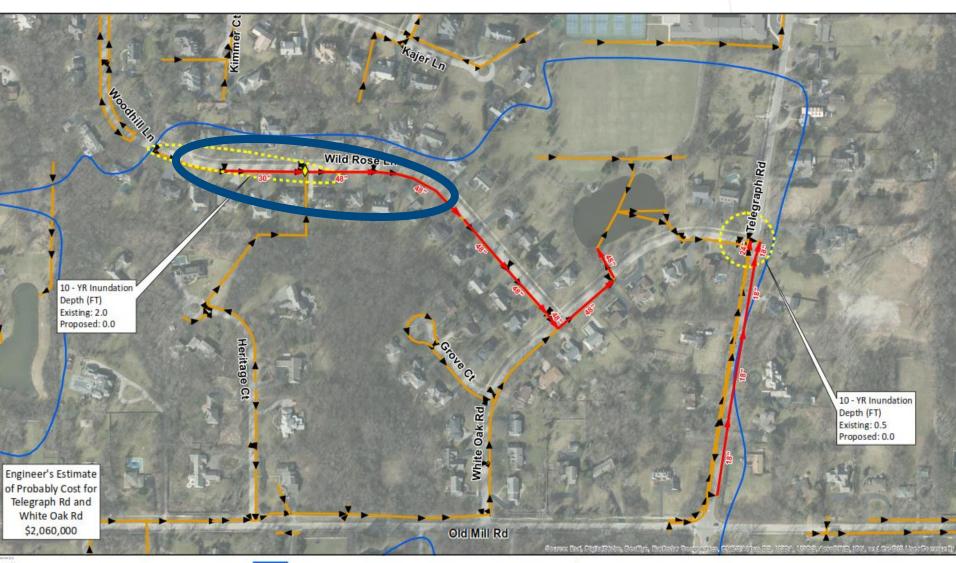
Storm Pipe - Proposed

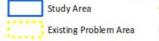
BAXTEROWOODMAN

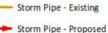
2014 Recommendation – Western & Onwentsia

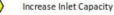


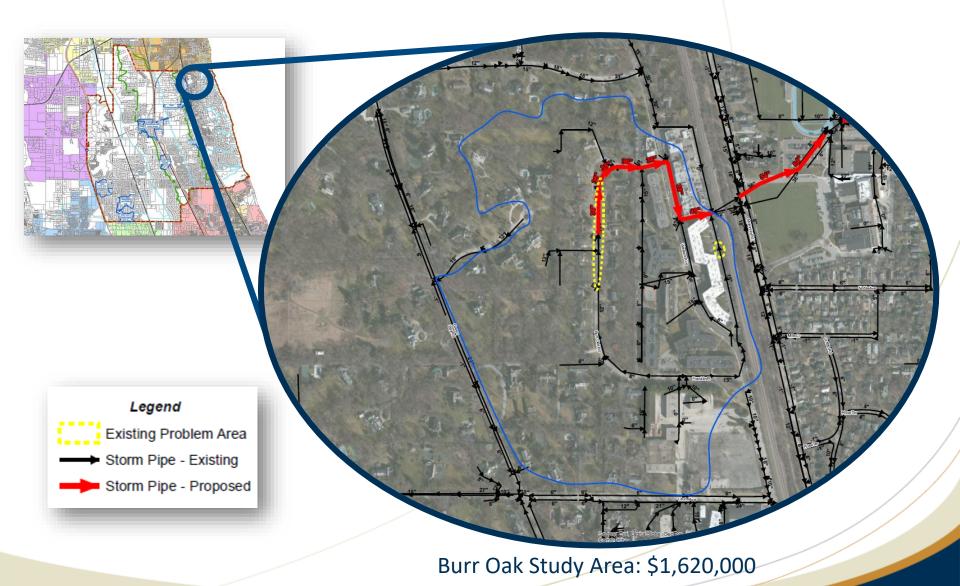
2019 Recommendation – Western & Onwentsia

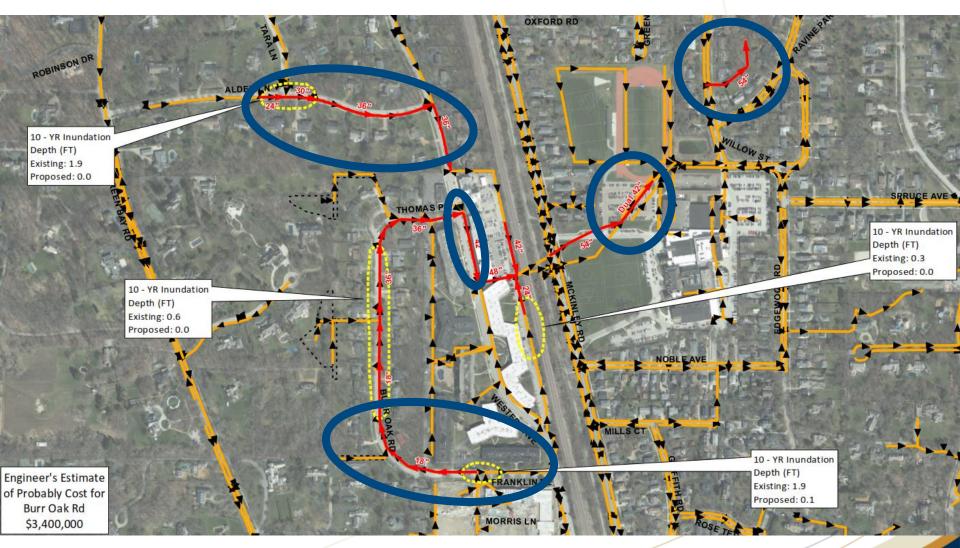

2014 Recommendation – Telegraph & White Oak



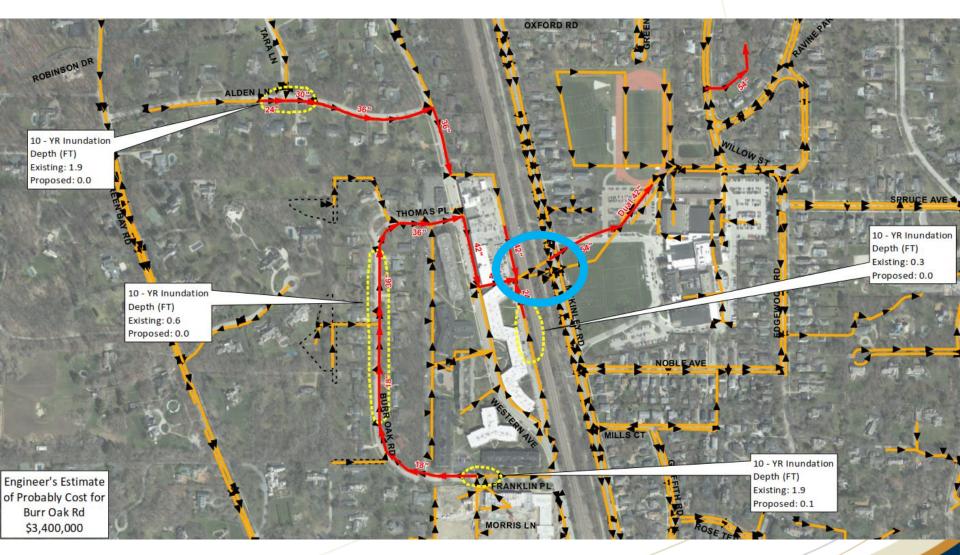



2014 Recommendation – Telegraph & White Oak





2014 Recommendation - Burr Oak


2019 Recommendation – Burr Oak

2019 Burr Oak Stormwater Improvements

2019 Burr Oak Study Area: \$3,400,000

2019 Redesign of Burr Oak

Engaged City Council

How Big is a "5-yr rain storm"?

How Big is a "5-yr rain storm"?

Rainfalls are not measured by depth alone, but by RATE or depth over time.

How Big is a "5-yr rain storm"?

6 hr -3.23 48 hr -4.61" 2 hr-2.49

240 hr - 6.87"

24 hr - 4.30

5 min -0.52"

1.59"

What determines the "size" of a storm?

Rainstorms are defined in reference to a statistical analysis of real recorded rain events over many years.

The "Recurrence Rate" defines what depth of rainfall, has what chance of occurring over a specific duration, in a specific location, in a given year

- The 10% probable rate of recurrence is then understood as the "10year" rain event
- The 1% probable rate of recurrence is then understood as the "100year rain event

Rainfall (in) for given recurrence interval

Storm	2-	3-	4-	6-	9-	1-	2-	5-	10-	25-	50-	100-	500-
Duration	month	month	month	month	month	year	year	year	year	year	year	year	year
5 minutes	0.19	0.22	0.24	0.27	0.31	0.33	0.40	0.52	0.62	0.77	0.90	1.03	1.35
10 minutes	0.35	0.40	0.43	0.49	0.56	0.61	0.73	0.95	1.13	1.42	1.65	1.89	2.47
15 minutes	0.42	0.49	0.53	0.61	0.69	0.75	0.90	1.16	1.39	1.74	2.03	2.32	3.04
30 minutes	0.58	0.66	0.73	0.83	0.94	1.03	1.24	1.59	1.91	2.39	2.78	3.17	4.16
1 hour	0.74	0.84	0.93	1.05	1.20	1.30	1.57	2.02	2.42	3.03	3.53	4.03	5.28
2 hours	0.91	1.04	1.14	1.30	1.48	1.61	1.94	2.49	2.99	3.74	4.35	4.97	6.52
3 hours	1.00	1.15	1.26	1.44	1.63	1.77	2.14	2.75	3.30	4.13	4.80	5.49	7.20
6 hours	1.18	1.35	1.48	1.68	1.91	2.08	2.51	3.23	3.86	4.84	5.63	6.43	8.43
12 hours	1.37	1.56	1.71	1.95	2.21	2.41	2.91	3.74	4.48	5.61	6.53	7.46	9.78
18 hours	1.48	1.69	1.85	2.11	2.39	2.61	3.14	4.04	4.84	6.06	7.05	8.06	10.57
1 day	1.57	1.80	1.97	2.24	2.55	2.77	3.34	4.30	5.15	6.45	7.50	8.57	11.24
2 days	1.72	1.97	2.16	2.46	2.79	3.04	3.66	4.71	5.62	6.99	8.13	9.28	12.10
3 days	1.87	2.14	2.34	2.67	3.03	3.30	3.97	5.08	6.05	7.49	8.64	9.85	12.81
5 days	2.08	2.38	2.61	2.97	3.37	3.67	4.42	5.63	6.68	8.16	9.39	10.66	13.81
10 days	2.63	3.01	3.30	3.76	4.27	4.65	5.60	7.09	8.25	9.90	11.26	12.65	16.00

Northeast Illinois Section Bulletin 70 (2019)

Rainfall Frequency Sources

U.S. DEPARTMENT OF COMMERCE
Lease II. Rosen, Resolutery

F. W. RECEMBRICA, Ond

TECHNICAL PAPER NO. 40

RAINFALL FREQUENCY ATLAS OF THE UNITED STATES

for Durations from 30 Minutes to 24 Hours and Return Periods from 1 to 100 Years

> Proposed by BAVID M. BERNEFIELD Congressive Fradion Review, Epidelogic Services Division So Engineering Station, Natl Conservation Service

WANTED TURK BAG.

For sets in the Equation select of Theorem 8, 0.0. Companied Stating Willes, Multisquist St, 0.0. Then 0.8

BULLETIN 70

Frequency Distributions and Hydro climatic Characteristics of Heavy Rainstorms in Illinois

by FLOAD A. HUFF and JAMES R. ANGEL

Title: Progrescy Destributions and Hydroclassics Characteristics of Henry Familiation in Binocs.

Abstract: This report presents the results of an estuaries investigation of the distribution of heavy
standards in Binocs based on their of of programmes account operand durage [901–1903. Howev are
frequency destributions of pour mainful for periods ranging from Festivates to 10 slees and for recursivatervisit of from 1 mounts to 100 years. Results one presented in two forces: more includes the 70 regions
of approximately homogeneous procupitation classes, and cannot be subject imps based on the 51 section
for Frequency solutions are presented in both on account and an isomotion to fine the first of the results of the procurse of the charge and the normalized and account human. Familia of a question
are regional to an present for Charge and the nationalizing and contains adjusted to write influence on
distributions do not be massed in the 1 openion of influent results and charges and the influence of
the openion of the process of their participants on the process of the process of their participants on the process of the process o

Reference: Half, Floyd A., and Junes R. Angel. Propercy Destitations and Hydroclassic Characteristics of Heavy Foundation in Hannes Hannes Store Wines Survey, Champings, Bulletin 70, 1939.

Indicting Termin: Charactery, heavy ministrans, hydroclassically, hydrocentrology, Elivate, mindful country to sender conductors.

NOAA Atlas 14

Volume 2 Version 3.0: Delaware, District of Columbia, Illinois, Indiana, Kentucky, Maryland, New Jersey, North Carolina, Ohio, Pennsylvania, South Carolina, Tennessee, Virginia, West Virginia

Geoffrey M. Bonnin, Deborah Martin, Bingzhang Lin, Tye Parzybok, Michael Yekta, David Riley

S. Department of Commerce

ational Oceanic nd Atmospheric Administration

ational Weather Service

Silver Spring, Maryland, 2004 revised 2006

Historical Precipitation for Illinois

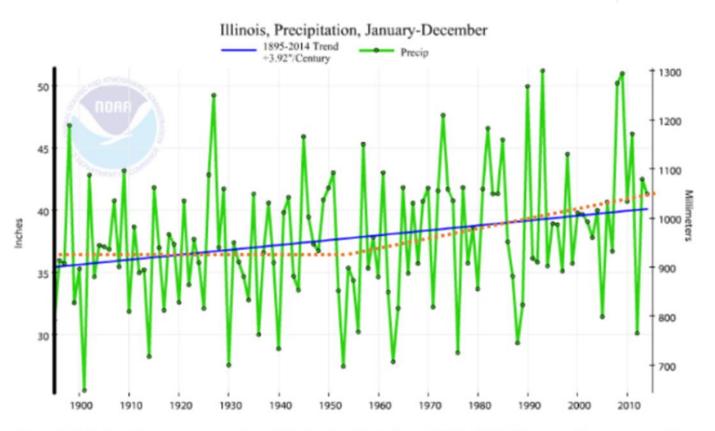
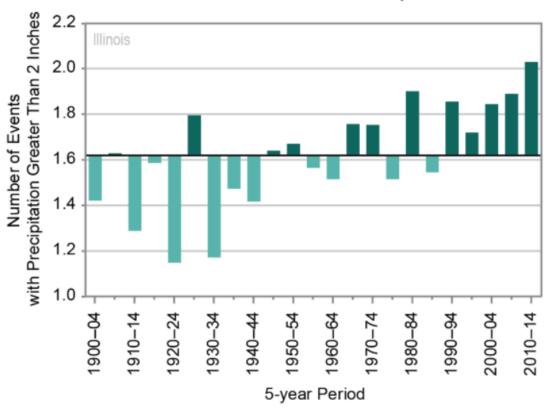
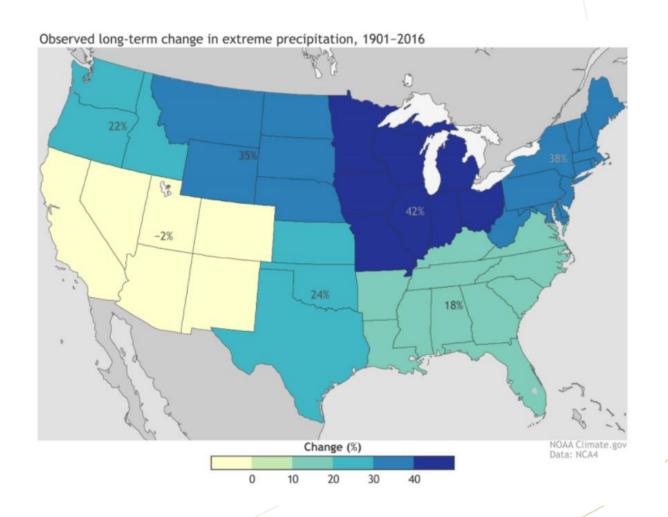
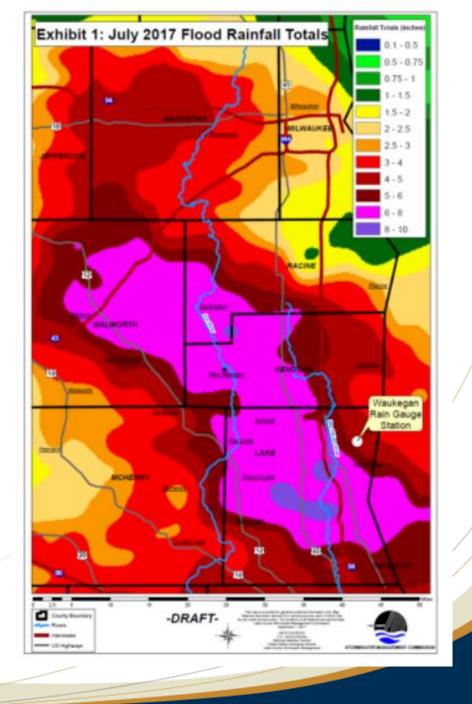



Figure 2.2: Statewide average annual precipitation for Illinois from 1895 to 2014. The green line represents the year to year variation. The blue line is the trend line. Source: National Center for Environmental Information (2015)


Extreme Precipitation Events Trending Up

Change in the top 1% (99th percentile)


Lake Forest Rainfall

Record Event July 2017 (~500-year storm)

2019 – No events greater than 2-year recurrence

Courtesy of Kurt Wolford, LCSMC

Update of Bulletin 70 Rainfall Depths

Storm Event	Duration	Bulletin 70 (1989) Depth [in]	Bulletin 70 (2019) Depth [in]	Percent Change	Updated Return Period for 1989 Depths
2-year	2-hour	1.79	1.94	8.40%	1.7-year
5-year	2-hour	2.24	2.49	11.20%	3.6-year
10-year	2-hour	2.64	2.99	13.30%	6.5-year
25-year	2-hour	3.25	3.74	15.10%	15.2-year
50-year	2-hour	3.82	4.35	13.90%	28.3-year
100-year	2-hour	4.47	4.97	11.20%	59.7-year

Burr Oak Stormwater Improvements

Current capacity for a 5-year rain event

Proposed conditions to mitigate flooding for a 10-year event (depth less than 3" in the road) (\$3.4M)

Increase to 25-year protection (\$5.3M) – DRAFT

- -> Potential impacts
 - Future expectations
 - Costs
 - Downstream capacity/impacts

Lake Forest Stormwater Masterplan Updates

The updates to the Stormwater Masterplan used the new, 2019, bulletin 70 data; and provided recommendations and costs as such

This is proactive!

Not many communities have updated their studies to even understand how the new data might affect the recommended projects

Questions?

Bulletin 70 Stormwater Masterplan Updates – Lake Forest Case Study

Matt Moffitt, P.E., CFM, CPESC

