

Stormwater Volume and Treatment Methods

Simplifying the Numbers

IAFSMPresented by: Tom Powers P.E.,March 10, 2011CFM, LEED AP, CPESC

Introduction

ht

GOALS:

- Improve understanding of Rate and Volume (Quantity) Stormwater Design
- ✓ Improve understanding of strategies to achieve points
- ✓ Share successful LEED documentation methodology
- ✓ Share past Lessons Learned

Rate & Volume Design

Agenda

- I. Design intent
- II. Design Goals requirements
- III. Typical Strategies
- IV. Sample calculation
- V. Lessons learned

Wight Rate & Quantity

General Intent

Reduce <u>net</u> stormwater runoff <u>rate</u> and <u>quantity</u>
 <u>leaving</u> the site

Rate = Discharge rate (CFS)

Quantity = Runoff volume (Acre-FT) or (Cu.Ft.) or (Depth)

Typically quantity rules are set by regulatory group or professional guidance (LEED)

"Permanently" capture stormwater volume on site to meet quantity point intent

Rate & Quantity

Example Design Intents

LEED Version 3 :

- To limit disruption of natural hydrology by reducing impervious cover, increasing on-site infiltration, reducing or eliminating pollution from stormwater runoff, and eliminating contaminants. No stormwater increase or 25% reduction depending on % Impervious.
- ✓ City of Chicago

Capture 1/2" first flush of new impervious runoff

Wight

Typical Strategies - Rate Stormwater Design – Rate Control

Typical Strategies - Rate

Reduced impervious – Synergy with Quantity

Open Space

Green roof

A. Restricted outflow (detention)

Add a greenroof and some landscaping to a dense urban site

Rate control is often a standard regulatory requirement

Typical Strategies - Quantity

A. Reduced Impervious

- 1. Open Space
- 2. Green roof

B. Infiltration

- 1. Permeable pavement
- 2. Soak aways
- 3. Rain gardens
- 4. Bio-infiltration
- C. Stormwater Re-use/Rainwater Harvesting
 - 1. Cisterns

Dry Detention typically is <u>not</u> a quantity strategy (based on past CIR)

Typical Strategies – Quantity Maximize Open Space | Protect Natural Areas

aht

RAIN GARDENS

PROPOSED OPEN SPACE:

Reduced impervious

- 1. Increase Open Space
 - Reduce aisle widths and sidewalk widths
 - Increase planter islands widths
 - Undrained permeable pavement subgrade w/ appropriate freeboard
- 2. Green Roof
 - Intensive vs. extensive green roofs
 - Manufacturer test data

GREEN ROOFS AND LANDSCAPE

Applicable to wide open spaces and dense urban areas.....

Convert Stormwater to Resource water

NOTES

Watertight system

- Sensors and control systems \checkmark
 - Pumps
- Overflow and backwater considerations
- **Backflow protection** \checkmark
- Stormwater pre-treatment \checkmark
- Maintenance and drain down

1. Irrigation

- Above ground and below ground cisterns available
- Cistern sized based on July irrigation demand. Verify drainage area supports demand
- Above ground fairy simple and extra benefit of visual feature
- Below ground cistern involves complicated integrated design
- Toilet Flushing and washdown 2.

POTENTIAL IMPACT: Subtract irrigation tank volume from gross site runoff volume

Typical Strategies - Quantity Stormwater Design – Quantity Control

Infiltration Methods:

Wight

Infiltrate Stormwater aka aquifer recharge

Infiltration

One of two typical scenarios: Soil support high rate of infiltration Soils do not support high rate of infiltration

Infiltration Volume

Infiltration - Soil supports infiltration

Test soils to establish infiltration rate. Double ring infiltrometer, Guelph Permeameter, Falling head test

Generally K factor in/hr is useful to determine if soils are suitable for infiltration but not useful for preparing a simple hand calculation.....

The infiltration volume over 24 hrs= ????

Image from Surechem.com

Slow Infiltration - Soil does not support high rate of infiltration (aka Clay or Silt Loam)

Even with 0.1 in/hr rate of infiltration, it would appear there still is value as over time mounded water in infiltration basin will drain to water table.....

Infiltration volume is the volume of infiltration basin below overflow. Actual aquifer recharge during 24 hour period is generally neglected for quantity calculation purposes

IMPACT: Subtract infiltration volume from gross site runoff volume

Infiltration Volume

Common calculation methods:

Complex:

- \checkmark Apply falling head rate at time steps through a design storm
- ✓ Green Ampt Dynamic Differential Equation
- ✓ Darcy's Law Dynamic Differential Equation

Simpler: ✓ Volume in vs. Volume out Wv = (P * Rv * A) / 12 **Rv=0.05+0.9la** RV = from studied value

Most Simple:

 ✓ Size infiltration basin based on small storm runoff volume and provide 100% storage. Treat as retention basin neglect infiltration and evapotranspiration

Rational Method to Size Infiltration Volume

Logic Behind Using Rational Method:

- Accepted by City of Chicago for infiltration calculation
- ✓ Duplicates Storm sewer calculations
- ✓ Conservative volume estimate and coefficients
- ✓ Accepted by MWRD and IDOT for small detention analysis
- ✓ Original USGBC recommended methodology

Drawbacks:

- Technically meant for conveyance calculations
- ✓ Old technology
- ✓ Potentially subjective
- ✓ Average infiltration outflow rate is not constant

Columns 2&3:	Assume a variety of storm durations and choose
	the corresponding intensities from Bulletin
	70.
Column 4:	Drainage area in acres.
Column 5:	Computed by Q = CIA where C is based on post
	development conditions.
Column 6:	Allowable discharge determined previously.
Column 7:	Column 5 - Column 6

	Runoff	Storm	Intensity	Area	Inflow	Release	Storage	Storage
	Coeff.	Duration	I	A	Rate	Rate	Rate	(Qi-Qo)T x 60
	С	т	(in/hr)	(Acres)	Qi	Qo	(Q1-Q0)	(cu. ft.)
		(min)			(cfs)	(cfs)	(cfs)	
	Col. 1	Col. 2	Col. 3	Col. 4	Col. 5	Col. 6	Col. 7	Col. 8
1	0.9	10	10.02	25	225	63	162	97200
2	0.9	15	8.02	25	180	63	117	105300
3	0.9	20	7.10	25	160	63	97	116400
4	0.9	30	5.60	25	126	63	63	113400
5	0.9	45	4.58	25	103	63	40	108000
6	0.9	60	3.56	25	80	63	17	61200
7	0.9	90	2.80	25	63	63	0	0

The volume of storage required in cuft - 116400 cuft

Develop a rating curve for the outlet structure to determin the slowition which the storage must be provided below. To outlet structure is a 36 inch concrete pips with a groove end and a headwall. Inlet control for the outlet pips i assumed for the exercise; it is required outlet control b checked for correctness. Out Le

t	headwater	table:

IDOT Drainage Manual

Q (cfs)	HW/D	HW (feet)
30	0.85	2.55
40	1.04	3.12
50	1.20	3.60
60	1.45	4.35
70	1.70	5.10

	Section 1 Upstream	Drainage Area		
1	Upstream impervious area including area of permeable pavement	A	91,191	square feet
ż	Upstream weighted C-value (C-value=0.95 for permeable pavement areas for nearly direct rainfall)	c	0.95	unitiess
3	Volume of upstream runoff from a 1-inch storm = C * A _i * 1/12	Vasameet	7,219	cubic feet
	Describe intended function of system (is it standalone system designed for infiltration, is integrated as part of the detention storage, is it underdrained to downstream system, will it receive			
	Section 2 BMP	Feasibility		
5	Design soil infitration rate (must be 0.5 in/hr or greater unless underdrain system	1	2 000	in hr
6	Allowable depth of storage aggregate without provision of underdrain (=i/ 12			

Page 24 of 48

06/01/04

6	Allowable depth of storage aggregate without provision of underdrain (=i/ 12 inches/ft * 48 hours)	D _{ploe}	8.00	feet
7	Elevation of bottom of BMP (the infiltration surface)	ELEVaue	7.500	feet
8	Groundwater elevation	ELEVon	4.000	feat
9	Depth to seasonal groundwater (Must be 2 feet or greater, or 3.5 feet or greater if draining to combined sever)	Dow	3.5	feet
	Section 3 BMP Se	secifications		
	Commissions of the commercial exponent	L		feet
10	Inchesh ² 48 hours) Elevation of bottom of BMP (the infitration tunitice) Groundwater elevation Depth to seasonal groundwater (Must be 2 feet or greater - 35 feet or greater of daming to combined server) <u>Socials 3 BMP</u> : <u>Socials 3 BMP</u> : <u>Organic and the permeable perment</u> glength, width, or away Depth of underlying aggregate (must be lists than <i>D_{min}</i>). Aggregate porces(y (0.38 maximum unless detailed material report porced).	W	10	feet
	and the second second	Againt	13,070	squaré feet
ņ	Depth of underlying aggregate (must be less than D _{aton})	D,	1.0	feat
12	Aggregate porosity (0.38 maximum unless detailed materials report provided)	P,	0.38	feet.
13	Volume of Aggregate storage applicable to volume control = Area * D.*P.	Vere	4.967	cubic feet

DETERMINATION OF REQUIRED DETENTION STOKAGE

SUMPLE EXAMPLE Other Service 1

Tabletay area - 00 eases, comparis read coefficient 0 for 2015 our second size of second second states for and emissed anali = 75 min. S-year minfall intensity for n: = 75 min.) = 1.52 h

				14	10
Paralas	a These	Internety for 100 ye Okean	Indiano Mata (Line, 1 a Line, 16 a Cold, 15	Sherved Hade Out O Line. 12	(O.L.A.(Ibs) a GALD v 12)
(Hey)	(Merch)	[les/Hes]	(rhd)	(eta)	(free H1)
6.17 6.35 6.67 6.83 1.5 7.0 2.0 2.0	524854F85	7.60 5.50 4.40 3.70 5.80 7.80 7.80 7.80 1.40 1.40 1.20	8 23 4 23 F 55 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	429 313 346 205 134 160 187 35 56	6.1 0.5 10.1 11.9 13.4 13.4 14.0 Mars 13.5

IMMERIA INTERSTV DATA

DATA 24.8

KL PC	1126	NIAL	DAX D	UKRAU	PLANUS	 1980 	TUK PLU

			(Allen	demont 2)				
Aur Deve (recention)	en den ur hunruj	Ratedal Jawhen 21 Yung	per herej 100 here	Access Danation (menulus or housed)	Bute fail (arches 3 Your	Robertal Descenday (arches per based) 3 Year 100 Year		
0.17 hrs. 0.13 0.50 * 0.67 * 0.51 *	10 mm 20 40 50 11 12	43 245 245 245 245 245 245 245 245	7.8 5.5 1.10 2.00 2.00 2.10	10 hr. 11 * 12 * 13 - 15 * 15 *	0.27 0.25 0.20 0.20 0.19 0.18	0.49 0.45 0.13 0.40 0.18 0.26 0.36		

Sample Calculation

aht

DELINEATE PROPOSED BMP DRAINAGE AREAS

Sample Calculation Determine gross rate and quantity

ght

PRE-DEVELO	OPMENT RA	ATE AND	QUA	NTITY			A1		POS	T-DEVEL	OPMEN	NT R/	ATE AN	D QL	JANTIT	Y		A2
					In th	is ca	se sto	orm crite	eria d	efined	by							
Project Data			Rainfall	Data	LEE	D 1	& 2-Y	R 24 H	P rojec	t Data				Rainfall	Data			
Site Area =	64072 SF		Bullletin	n 70 Will Coun	nty	\wedge			Site Are	a =	64072	SF		Bullletin	70 Will Cou	nty		
	1.47 Acre					V	V				1.47	Acre						-
c=	0.61		Peak Int	ensity @ Tc(ir	n/hr):	1-yr	2-yr		c=		0.76			Deak Inte	ansity @ Tc(i	in/hr\·	1-yr	2-yr
Tc=	0.01 0.08 hr		24-hr Ra	infall Depth (i	in):	2.57	3.16		Tc=		0.08	hr		24-hr Rai	nfall Depth	(in):	2.57	3.16
	5.0 min							_			5.0	min				(,.		
Rational Method	Existing Rate Ca	lculation							Gross	Post Develo	pment Rate	Calcu	lation		Note - Gro	ss Volum	ne is reduc	ed
															by flow re	strictor		
Q=cia		c = Runof	f Coefficie	ent (Q=cia				c = Runoff	Coefficie	ent			
		i = Peak R	lainfall Int	tensity (in/hr))			_					i = Peak Ra	infall Int	ensity (in/hi	r)		
		A = Area	(Acres)					-					A = Area (/	Acres)				
Q _{1yr} =	0.61 x	3.72	2 x	1.47					Q _{1yr} =		0.76	x	3.72	x	1.47			
=	3.35 cfs									=	4.17	cfs						7
								-										
Q _{2yr} =	0.61 x	4.56	5 x	1.47					Q _{2yr} =		0.76	х	4.56	х	1.47			
=	4.10 cfs									=	5.11	cfs						
Rational Method	Existing Quantit	y Calculatior	ו						Gross	Post Develo	pment Qua	intity C	alculation		Note - Gro	ss Volum	ne is be re	duced
																Through	bio-infilt	ration
V=cda		c = Runof	f Coefficie	ent A ha Channa					V=cda				c = Runoff	Coefficie	ent 1. ha Staara			
		A = Area	(Acres)	4-nr storm									A = Area (Depth 24 Acres)	4-nr storm			
		A - Aicu	(/10/05/										A-Alca ((cres)				
V _{1yr} =	0.61 x	2.57	7 x	64072	х	1/12			V _{1yr} =		0.76	x	2.57	х	64072	x	1/12	
=	8389 CF								=		10464	CF						
V -	0.61 %			64072		1/12			V -		0.76		2.16		64070		1/12	
• 2yr	10215 CE	5.10	^	04072	^	1/12			* 2yr=		12966	^ CE	5.10	^	04072	^	1/12	
-	10315 CF								=		12800	ur						

Sample Calculation

<u>INFIL</u>	TRATIO	N STORA	<u>ge volum</u>	<u>ES</u>					A3	
DECODICE	0.11	The size of the								
DESCRIPT	ION:	The site conta	ins multiple bioin	filtration z	ones and bis	wales that	store wat	ter for infi	Itration.	
		The volume of	of the bio-infiltra	tion stores	e reduces the	aross rup	off volume	ndrained i	by convent	ion methods
		The volume of	or the bio-minua	cion scorag	e reduces the	grossiun	on voruni	-		
Bio-Infilt	ration Zone	#1								
4' stone c	atchment of	CA-7	Void rat	ic 38%						
Area (SF)	Depth (FT)	Volume (CF)								
949	4	<u>1442</u>								
		#2								
A' stope s	ration Zone	<u>• #Z</u>	Void rat	ic 200/						
+ stone c	atchment of	CA-7	void rat	.ru 38%						
Area (SE)	Depth (FT)	Volume (CE)								
482	4	733								
Bio-Infilt	ration Zone	#3								
4' stone c	atchment of	CA-7	Void rat	ic 38%						
Area (SF)	Depth (FT)	Volume (CF)								
668	4	<u>1015</u>								
Die Infilt	ration Zone	# 4								
A' stone c	atchment of	<u>+ 4</u>	Void rat	ic 38%						
4 stone c	atchinent of	CA-7	Volutat	.rc 36%						
Area (SF)	Depth (FT)	Volume (CF)								
653	4	993								
Bio-Swal	<u>e Zone # 5</u>									
4' stone c	atchment of	CA-7	Void rat	ic 38%						
Area (SF)	Depth (FT)	Volume (CF)								
930	4	<u>1414</u>								
TOT		PATION								
101/		RATION	5597	CF	Infiltration					
VOL	UME CA	PACITY:			Volume					

Sample Calculation

Check that goals are met...

SUMMARY A	ND ANALYS	SIS			A5.1				
T10057 01750 1									
TARGET RATES A	ND VOLUMES					_	_		
Existing imperviou	is exceeds 509	6 theref	ore reduce	runoff by	/ 25%				
		, cherer			2.570				
Target Q _{1yr} =	2.51		75% Pred	developm	nent Rate				
				Refer to	o A1 for Pr	edevel	opment	Rate	
Target Q _{2yr} =	3.08		75% Pred	developm	nent Rate				
Target V _{1yr} =	6292		75% Pred	developm	nent Volun	ne			
				Refer to	o A1 for Pr	edevel	opment	Vol	
Target V _{2yr} =	7736		75% Pred	developm	ient Volur	ne			
	D. 1/01/10/050						_		
GRUSS RATES AN	D VOLUMES:					_	_	-	-
Gross O -	4.17		DEE AD			_			
GIUSS Q _{1yr} -	4.17		NLI . A2			_	_		
Gross One =	5.11		REF. A2						
Gross V _{1vr} =	10464		REF. A2						
Gross V _{zyr} =	12866		REF. A2						
NET RATES AND	VOLUMES:				A5.2				
REDUCE GROSS RU	N-OFF RATE TH	IOUGH U	SE OF REST	RICTORS,					
INFILTRATION STO	RAGE VOLUME	IS PROV	IDED TO ST	ORE VOLU	ME/FLOW	QUE			
				_	Logic cl	neck		_	
NetO	1.00	-6-		2.51	0//4	055			
NetQ _{1yr} =	1.98	cis		2.51	UKV	REF	A4		
Net O. =	1.98	cfs	<	3.08	OKV	REE	04		
ALC COLUMN	1.50		-	0.00	0.00				
						_	_		
REDUCE GROSS RU	N-OFF BY INFIL	TRATION	STORAGE	VOLUME:					
Net V = Gross V - I	nfiltration V		REFER TO	D A3 FOR	INFILTRAT	ION		Logic cl	neck
Not V -	10464		STORAG		4967	-	6202	01/1	
Net V _{1yr} =	10464	-	2287	-	4807	-	0292	UNV	
Net V. =	12866	-	5597	=	7269	<	7736	OKV	
140-C V 2yr-	12000	-	1600	-	1205	-	//30	ON	

Lessons Learned

✓ Watch out for the goats tongue!

Ice dams from Green roof

forces

R&Q Other Modeling Methods

Pond Pack

- ✓ Infiltration rate option
- ✓ Multiple pond design

Recarga Bio-infiltration model

- ✓ University of Wisconsin Model
- ✓ Includes Evapotranspiration
- ✓ Suitable for wetland detention modeling
- ✓ Suitable for site and neighborhood scale models
- ✓ Does not model gap graded storage layer
- EPA SWMM XP SWMM WINSLAMM SUSTAIN

METHOD COMPARISON

1" Rainfall, 1.47 acres, C=0.76, Cn=90, Type D soil, clay sub soil

Method	Required Storage calculated		
Rational Method	0.09 acre-ft ->0.24 Acre-ft soak away		
TR-20	0.06 acre-ft ->0.16 Acre-ft soak away		
Recarga	1.0 acre-ft (sand storage clay subsoil) RECARGA Version 2.3 Bioreterdory/Records Storing Program		
HYBRID METHOD?			

Stormwater Design – Quality Control

Int

<u>Typical LEED Requirement:</u> In plain english.....

Remove 80% Total suspended soils (TSS) for 90% of the average annual rainfall

By designing BMP's in accordance with local standards

OR

Provide product data to demonstrate compliance

Stormwater Design – Quality Control

Typical Strategies:

- A. Planning and Development Strategies (Non Structural)
 - 1. Day lighting stormwater/disconnected Impervious
 - 2. Clustered development/maximized open space
 - 3. Preserve natural drainage features and depressions
 - 4. Xeriscape
 - 5. Reduce impervious
 - 6. Reduce disturbance
 - 7. Protecting other natural areas

But what is peculiar about these items?

Difficult to measure them for TSS removal with out before and calculations and detailed environmental analysis.....

Stormwater Design – Quality Control

Typical Strategies:

- A. Structural Treatment train of BMP's *Including:*
 - 1. Bio Swales
 - 2. Vegetative Filter strips
 - 3. Rain gardens
 - 4. Bio-Infiltration systems
 - 5. Infiltration trenches
 - 6. Soak Aways/French Drains
 - 7. Permeable pavers
 - 8. Level Spreaders
 - 9. Wet Detention
 - 10. Constructed Wetland Detention
 - 11. Constructed Wetlands
 - 12. Pre-engineering systems Manufactured systems
 - 13. Inlet Filters

Notice what is not listed:

- A. Greenroofs alone
- **B. Dry Bottom Detention alone**
- C. Native plantings alone

WATER QUALITY Sample Calculation

Remember:

Remove 80% Total Suspended Soils (TSS) for 90% of the average annual rainfall

SO FIRST THINGS FIRST

CAPTURE 90% OF THE DRAINAGE AREA FOR TREAMENT!

OR IT'S ALL FOR NAUGHT.....

Wight

WATER QUALITY Sample Calculation

Remember:

Remove 80% Total Suspended Soils (TSS) for 90% of the average annual rainfall

But what is TSS and how do you measures its removal.....

Due to the measurement difficulties designers typically look for TSS removal rate guidance from the local regulatory agency such as:

- A. DuPage County
- B. Lake County
- C. LEED (As of Version3)

WATER QUALITY **Sample Calculation**

DuPage BMP Manual is a great reference

Dry Detention Basin: Extended detention with forebay and micropool
 Wet Detention Pond: Permanent pool equal to

0.5 inch storage per impervious acre. 22. Wet Detention Pond: Permanent pool equal to

2.5 (Vr); where (Vr) =mean storm runoff.
 23. Wet Detention Pond: Permanent pool equal to

4.0 (Vr); approximately 2 weeks retention

Table 2-2 Pollutant Removal Rates of Urban BMP Designs

24 Constructed Wetland Detention: Shallow Marsh 25. Constructed Wetland Detention: Combination Pond/Wetland 26. Constructed Wetland Detention: Extended

Wetland Detention

USGBC Reference Guide has a table too....

Table 2. Management Practices for Removing Total Suspended Solids from Runoff

	Average TS Removal	Probable Rage of TSS Removal	Factors to Consider	
Effectiveness of Managment Practices for Total Suspended Solids Removal from Runoff				
Infiltration Basin	75%	50 - 100%	soil percolation rates, trench surface area, stoarge volumes	
Infiltration Trench	75%	50 - 100%	soil percolation rates, trench surface area, stoarge volumes	
Vegetated Filter Stip	65%	40 - 90%	runoff volume, slope, soil infiltration rate	
Grass Swale	60%	20 - 40%	runoff volume, slope, soil infiltration rates, vegetative cover, buffer length	
Porous Pavement	90%	60 - 90%	percolation rates, storage volume	
Open Grid Pavement	90%	60 - 90%	percolation rates	
Sand Filter Infiltration Basin	80%	60 - 90%	treatment volume, filtration media	
Water Quality Inlet	35%	10 - 35%	maintenance, sedimentation storage volume	
Water Quality Inlet with Sand Filter	80%	70 - 90%	sedimentation storage volume, depth of filter media	
Oil/Grit Separator	15%	10 - 25%	sedimentation storage volume, outlet configuration	
Extended Dentention Dry Pond	45%	5 - 90%	storage volume, dentention time, pond shape	
Wet Pond	60%	50 - 90%	pool volume, pond shape	
Extended Dentention Wet Pond	80%	50 - 90%	pool volume, pond shape, detention time	
Constructed Stormwater Wetlands	65%	50 - 90%	storage volume, detention time, pool shape, wetland's biota, seasonal variation	

Source: Environmental Protection Agency's Guidance Specifying Management Measures for Sources of Non-Point Pollution in Coastal Waters. Table 4-7. January 1993.

Use engineering judgment to select range of treatment... for instance if the design infiltrates100% of the tributary volume then it would be reasonable to assume 90-100% TSS removal....but if design infiltrates 50% of required volume then adjust rate down....

WATER QUALITY **Sample Calculation**

- 20. Dry Detention Basin: Extended detention with forebay and micropool
- 21. Wet Detention Pond: Permanent pool equal to
- 0.5 inch storage per impervious acre. 22. Wet Detention Pond: Permanent pool equal to
- 2.5 (Vt); where (Vr)=mean storm runoff.
- 23. Wet Detention Pond: Permanent pool equal to
- 4.0 (Vi); approximately 2 weeks retention.

Table 2-2 Pollutant Removal Rates of Urban BMP Designs

24. Constructed Wetland Detention: Shallow Marsh

- 25. Constructed Wetland Detention: Combination Pond/Wetland
- 26. Constructed Wetland Detention: Extended Wetland Detention

Fatsi Suspended Sulla. Bischemical Orygen Demand fotal Phosphar fots | N ltrose Capability Pesticides WIT IN fetals BMP Filter Strip 0 ۲ 8 8 (ð 8 8 • • 8 • ۲ 9 Mode Vegetated Swale 0 ۲ 0 8 8 60 з • ۲ 0 ۲ ۲ ۲ • 3 60 ٠ Infiltration Basis 9 8 8 8 ۵ ۲ 0 0 9 Madant ٠ ۲ • . ٠ ۲ \otimes 8 8 High . 8 High a 60 . Infiltration Trench 8 . . ۲ . ۲ ٠ 0 . : . 8 6 8 High • ٠ 8 8 9 • . High 10 ٠ **Pervices** Pavement 8 . 9 0 a 8 6 11 0 õ • 9 ٠ 8 8 \otimes High • 12 ٠ ٠ High ٠ . • . ٠ 8 8 13 anufactured Stre 8 ٠ ۲ \otimes 8 ۲ 8 8 8 High 14 High 8 8 8 8 8 60 . 15 ٩ Detestion Basin 8 9 ۲ ۲ ۲ 0 8 8 8 Modente 16 . ۲ ۲ • \otimes \otimes \otimes Modent 17 ٠ 0 õ . 8 8 ٠ . 8 High 18 Dry Detention Fond 8 0 0 0 \otimes 0 8 8 ۲ 19 ۲ 8 8 8 • 20 Wet Detention Pond \otimes a • ۲ ۲ ۲ \otimes 8 0 Moden 21 ۲ ۲ • 8 8 0 8 Modente 22 ٠ 0 8 • ۲ 9 8 8 High ٠ 23 Constructed Wetland ۲ 8 0 • \otimes 0 \otimes Modente ٠ ۲ 24 8 8 ٠ . . 8 ۰ 0 \otimes Modente 25 8 26 a ۲ . 8 • 12 High 12

Section 2

Treatments are cumulative:

Treatment Rate 1 = 80%Treatment Rate 2 = 50%Treatment Rate 3 = 80%

After T1 20% TSS remains After T2 10% TSS remains After T3 2% TSS remains

Cumulative TSS removal rate = 98%

Site typically have multiple treatment Trains, determine TSS rate by area....develop a "weighted" rate.

Wight

WATER QUALITY Sample Calculation

Remember:

Remove **80%** Total suspended soils (TSS) for **90%** of the average annual rainfall

But what is the average annual rainfall....?

USGBC LEED V3 defines treating a 1" storm event as treating the average annual rainfall for our region

Regulatory rules soon to come.....

Wight

WATER QUALITY Sample Calculation

50,000 SF site total

45,000 SF Captured by BMP's >90% OK

30,000 SF Permeable pavement drains to infiltration trench to dry basin with larger bio-infiltration at outlet <u>Treatment Train 1</u>: 1) permeable pavement 80% 2) an infiltration trench, 50% 3) bio-infiltration basin 80% -> Treatment Rate = 98%

10,000 SF Building drains to small bio-infiltration basins to infiltration trench to larger bio-infiltration at outlet <u>Treatment Train 2</u>: 1) bio-infiltration basin 70% 2) infiltration trench 50% 3) bio-infiltration basin 80% -> Treatment Rate = 97%

5,000 SF Native Landscape to larger bio-infiltration at outlet <u>Treatment Train 3</u>: 1) Filter Strip 40% 2) bio-infiltration basin 80% Treatment Rate = 88%

Weighted rate = {30000(.98) + 10000(.97) + 5000 (.88)}/ 45,000 = 97% TSS removal

Provide BMP volume information in appendix format to document capacity.

TSS Method Proposed By DuPage County Ordinance Revision follow similar methodology

WATER QUALITY Sample Calculation

Trains 1,2,3 end at infiltration basin with 100% stay on for 1" design

Remember:

Remove 80% Total suspended soils (TSS) for 90% of the average annual rainfall

We have captured 90% of the drainage area

We have determined a weighted treatment rate

Sized system to hold/treat 1" depth of rainfall similar to Quantity point

We have met the point requirements

Regulatory Trends

•City of Chicago – Volume Based Design Component (SS6.1) retain ½" volume control for new impervious

•DuPage County, IL – Water Quality BMP Component (SS6.2)

•DuPage County, Lake, McHenry IL Future - Water Quantity BMP Component (SS6.1)

•Cook County, IL MWRD Future – Water Quality 1" treatment for Discharge to waterway (SS6.2)

•Cook County, IL MWRD Future – Water Quantity 1" treatment for Discharge to combined sewer (SS6.1)

•Will County, IL - BMP requirement to show no adverse impact (SS6.2)

•USACE – BMP requirement as part of 404 permit (SS6.1 & SS6.2)

•Federal Projects – Energy Independence Act, restore natural condition (SS6.1 and SS6.2) Project over 5000 SF

•Wisconsin IDNR – Infiltration requirement 60%-90% average annual predevelopment infiltration volume

•New Jersey Stormwater Management– Maintain 100% of average annual preconstruction groundwater recharge.

•Ohio – Big Darby Watershed - overall site post-development groundwater recharge equals or exceeds the predevelopment groundwater recharge

•North Carolina - control and treat the stormwater runoff from all built upon areas of the site from the first 1.5 inches of rain

•West Virginia MS 4 - The first 1 inch of rainfall must be 100% managed with no discharge to surface water Not just a LEED issue anymore, and it certainly isn't going away....

Wight & company | Wightco.com

Tom Powers *P.E., CFM, LEED AP, CPESC Tpowers* @*wightco.com*