Runoff Volume a Cup or a Bowl?

Joy Corona, PE, CFM Bleck Engineering

1991 NIPC Study

To compare and assess common hydrologic methods used in drainage and detention design, investigating impact of :

design rainfall amounts,

storm distributions on peak

flows,

and detention volumes

Graph Parameters

Watershed Development Ordinance

Lake County Stormwater Management Commission

For determination of soil runoff characteristics, areas of the *development* that are hydrologically disturbed and compacted shall be changed to that soil types' highest runoff potential/soil group classification.

Table 2-2a Runoff curve numbers for urban areas #					
			Curve nu	imbers for	
Cover description	hydrologic soil group				
	Average percent				
Cover type and hydrologic condition	impervious area 2/	A	В	С	D
Fully developed urban areas (vegetation established)					
Open space (lawns, parks, golf courses, cemeteries, etc.)2:					
Poor condition (grass cover < 50%)		68	79	86	89
Fair condition (grass cover 50% to 75%)		49	69	79	84
Good condition (grass cover > 75%)		39	61	74	80
Impervious areas:			6	8	
Paved parking lots, roofs, driveways, etc.					
(excluding right-of-way)		98	98	98	98
Streets and roads:					
Paved; curbs and storm sewers (excluding					
right-of-way)		98	98	98	98
Paved; open ditches (including right-of-way)		83	89	92	93
Gravel (including right-of-way)		76	85	89	91
Dirt (including right-of-way)		72	82	87	89
Western desert urban areas:					
Natural desert landscaping (pervious areas only) 4		63	77	85	88
Artificial desert landscaping (impervious weed barrier,					
desert shrub with 1- to 2-inch sand or gravel mulch					
and basin borders)		96	96	96	96
Urban districts:					
Commercial and business		89	92	94	95
Industrial		81	88	91	93
Residential districts by average lot size:					
1/8 acre or less (town houses)		77	85	90	92
1/4 acre		61	75	83	87
1/3 acre		57	72	81	86
1/2 acre		54	70	80	85
1 acre		51	68	79	84
2 acres	12	46	65	77	82

Questions 20-yrs later... Cups or

Report Findings

HEC-1 (et.al) conservatively estimate detention requirements

 CN over-predicting runoff volumes from pervious areas Assumption that all volume available at the start of the storm invalid

Determined HSPF (continuous simulation model) most appropriate

HSPF MODEL CALIBRATION

HSPF Unit Area Detention Volumes

3 land cover types (parameters)	 grassland lowland/forest hydrologically connected impervious
40 years of runoff	 Continuously simulate flow through detention basins Varying percent imperviousness
3 NOAA hourly rainfall gages	 O'Hare, McHenry, Midway Average of 3 gages = 7.47-in vs. 7.58-in
Regional Average Detention Volumes	 2-yr and 100-yr volumes for each gage determined Average values used to create figure

Final TMDL Report for Salt Creek, October 2004

Final TMDL Report for Salt Creek, October 2004

Existing Land Cover (at HSPF calibration)

Land Use Reasonable Today?

- 71.2 % grassland
- 13.8 % Forest / Wetland
- 15% HC Impervious

Comparison Results

¼ Ac Res. (40-ac)	HEC-1*	HSPF
2-yr	3.0 🗸	1.6
100-yr	11.2 🗸	7.8

28% HC impervious, CN 69 (10% HD impervious, 57% Lawn, 5% trees/landscape), Tc 50-min

Commercial (40-ac)	HEC-1*	HSPF
2-yr	7.3 🗸	6.0
100-yr	17.8 🗸 (17.6)	15.8

85% hydraulically connected impervious, CN 68 (15% lawn), Tc 15-min

* Bulletin 70 (3.04 and 7.58-inches), Huff 3rd quartile

Recreate Results

100-yr comparison

SO WHAT???

HSPF Calibration needs to be updated? CN over estimating pervious runoff V?

Should we be "bumping up" soil types?

Think...

