

Off with the Rule of Thumbs: Rethinking Hydrologic Impacts on Stormwater Infrastructure

Matthew Anderson, PE, CFM

Storm & Flood Products Manager

22 year in Industry6 with Autodesk

Improving the tools, workflows and technology engineers use to study and design civil infrastructure & water resources

Abstract

Rainfall events do not obey our theoretical nested intensity distributions, despite decades of continual use and the codification of these methods. Extreme events continue to stress local and regional civil infrastructure; our techniques and tools must change. It is no longer a matter of if, but rather when will next extreme event occur. We must **challenge** the **general assumptions**, our rules of thumb when it comes to rainfall, and the surrounding infrastructure's response to these events. In this session, we will look at a typical stormwater workflow using the **XPSWMM** Model. We'll investigate the general trends toward rainfall distributions using Atlas 14 as well as the hydrologic response methods and trends globally and how they apply to you today, saving your thumbs, and making you smarter & more productive.

Learning Objectives:

- Understanding rainfall information
- Learn how temporal distributions effect stormwater infrastructure
- Leverage the latest tools to assist in quickly evaluate critical durations

InfoSWMM®

xpswmm

ICMLiveTM

InfoWorks[®] ICM

SWMMLive[™]

RETHINKING HYDROLOGIC IMPACTS

"Based on existing data, ... the 100year floodplain is a **poor predictor of property damage** ... there is **no solid evidence** to justify a default 1% annual chance design level for flood reduction"

"The **reliability** of modeled flood risk can thus quickly **deteriorate as time** goes on, especially in rapidly developing regions."

Houston FEMA flood map missed 75 percent of flood damages, says new study

By Fernando Ramirez Updated 10:22 am, Wednesday, September 20, 2017

Photo: Brett Coomer, Houston Chronicle

REMOVING ASSUMPTIONS

CLEAR

Understand assumptions in hydrology methods so the resulting flood depths, velocity and hazard are visual & easily understood.

ACTIONABLE

Make hydrologic response actionable by viewing the results spatially, or statistically. Plan evacuation responses in the model.

SHARE

Results can be shared by video, or export the spatial extents of the hazard, depth or time to inundation.

COUPLED 1D / 2D MODELS

"WHAT WE THOUGHT WE KNEW WAS WRONG. 2D SHOW[ED] US MANY SURPRISES IN HOW FLOODING PROGRESSES IN FLAT AREAS." INNOVYZE USER IN KANSAS

COMPLETE PACKAGE

xpswmm/xpstorm

HOLISTIC MODELING

Innovyze®

xpstorm features

Bulletin 70 vs. Atlas 14

<u>Depths</u>

1989: Bulletin 70 2004: NOAA Atlas 14

Huff Distributions

Circular 173 (1990) Atlas 14 Temporals (2004)

http://www.isws.illinois.edu/atmos/statecli/RF/rf-update.htm

NOAA ATLAS 14 – VOL 2

ATLAS 14 Provides:

- Updated Rainfall Depths*
- Temporal Distributions

Percent of Occurrence

- 9 cumulative probabilities
 - 10% to 90% per Quartile
- 4 Quartiles + Average
- 6, 12, 24, & 96-hour Duration Sets

	PF tabular PF graphical		Supplement	ary information		Print page						
PDS-based precipitation frequency estimates with 90% confidence intervals (in inches) ¹												
Duration						-						
	1	2	5	10	25	50	100	200	500	1000		
5-min	0.353	0.418	0.525	0.615	0.741	0.839	0.938	1.04	1.18	1.28		
	(0.272-0.457)	(0.322-0.542)	(0.403-0.683)	(0.470-0.803)	(0.548-0.992)	(0.607-1.14)	(0.658-1.29)	(0.701-1.47)	(0.764-1.69)	(0.812-1.87)		
10-min	0.516	0.611	0.769	0.901	1.08	1.23	1.37	1.52	1.72	1.87		
	(0.398-0.670)	(0.471-0.794)	(0.590-1.00)	(0.688-1.18)	(0.803-1.45)	(0.889-1.66)	(0.963-1.90)	(1.03-2.15)	(1.12-2.48)	(1.19-2.73)		
15-min	0.630	0.746	0.937	1.10	1.32	1.50	1.68	1.86	2.10	2.29		
	(0.486-0.817)	(0.575-0.968)	(0.720-1.22)	(0.839-1.43)	(0.979-1.77)	(1.08-2.03)	(1.17-2.31)	(1.25-2.62)	(1.36-3.03)	(1.45-3.33)		
30-min	0.864	1.03	1.30	1.52	1.84	2.08	2.32	2.58	2.91	3.17		
	(0.667-1.12)	(0.792-1.33)	(0.996-1.69)	(1.16-1.99)	(1.36-2.46)	(1.50-2.81)	(1.63-3.21)	(1.74-3.63)	(1.89-4.20)	(2.01-4.62)		
60-min	1.09	1.32	1.69	2.00	2.43	2.76	3.10	3.45	3.91	4.26		
	(0.841-1.42)	(1.01-1.71)	(1.30-2.19)	(1.52-2.60)	(1.79-3.25)	(2.00-3.74)	(2.17-4.28)	(2.32-4.86)	(2.54-5.63)	(2.70-6.22)		
2-hr	1.32	1.60	2.07	2.47	3.02	3.45	3.88	4.32	4.91	5.36		
	(1.03-1.69)	(1.25-2.05)	(1.61-2.66)	(1.91-3.18)	(2.26-3.99)	(2.52-4.60)	(2.75-5.28)	(2.94-6.01)	(3.23-6.98)	(3.44-7.71)		
3-hr	1.45	1.78	2.31	2.76	3.39	3.89	4.39	4.91	5.60	6.14		
	(1.14-1.84)	(1.39-2.26)	(1.81-2.94)	(2.15-3.53)	(2.56-4.45)	(2.87-5.16)	(3.14-5.94)	(3.37-6.78)	(3.71-7.91)	(3.96-8.77)		
6-hr	1.71	2.07	2.66	3.18	3.92	4.51	5.13	5.77	6.66	7.35		
	(1.36-2.15)	(1.64-2.59)	(2.11-3.34)	(2.51-4.00)	(3.00-5.10)	(3.38-5.92)	(3.71-6.86)	(4.02-7.89)	(4.47-9.29)	(4.80-10.4)		
12-hr	2.02	2.35	2.95	3.48	4.28	4.94	5.64	6.40	7.47	8.32		
	(1.62-2.49)	(1.89-2.91)	(2.36-3.65)	(2.78-4.33)	(3.33-5.52)	(3.75-6.42)	(4.15-7.48)	(4.52-8.65)	(5.08-10.3)	(5.50-11.6)		
24-hr	2.30	2.66	3.30	3.88	4.75	5.48	6.26	7.10	8.29	9.25		
	(1.88-2.80)	(2.17-3.24)	(2.68-4.02)	(3.13-4.75)	(3.75-6.04)	(4.21-7.02)	(4.66-8.18)	(5.08-9.47)	(5.71-11.3)	(6.19-12.7)		
2-day	2.56	3.02	3.82	4.51	5.53	6.36	7.22	8.14	9.42	10.4		
	(2.12-3.08)	(2.49-3.63)	(3.14-4.59)	(3.69-5.45)	(4.40-6.90)	(4.94-8.01)	(5.43-9.27)	(5.88-10.7)	(6.55-12.6)	(7.06-14.1)		
3-day	2.81	3.30	4.15	4.90	5.99	6.88	7.81	8.81	10.2	11.3		
	(2.34-3.35)	(2.74-3.93)	(3.44-4.95)	(4.03-5.86)	(4.80-7.42)	(5.39-8.60)	(5.92-9.95)	(6.41-11.5)	(7.14-13.5)	(7.70-15.1)		
4-day	3.05	3.54	4.41	5.17	6.30	7.23	8.20	9.25	10.7	11.9		
	(2.55-3.60)	(2.96-4.19)	(3.67-5.22)	(4.28-6.15)	(5.08-7.76)	(5.69-8.98)	(6.25-10.4)	(6.77-12.0)	(7.55-14.2)	(8.14-15.8)		
7-day	3.66	4.16	5.03	5.81	6.97	7.93	8.95	10.0	11.6	12.8		
	(3.09-4.28)	(3.51-4.86)	(4.23-5.89)	(4.86-6.83)	(5.69-8.48)	(6.31-9.74)	(6.89-11.2)	(7.43-12.8)	(8.25-15.1)	(8.87-16.9)		
10-day	4.20	4.72	5.63	6.43	7.62	8.60	9.63	10.7	12.3	13.5		
	(3.58-4.87)	(4.01-5.48)	(4.76-6.54)	(5.42-7.50)	(6.25-9.19)	(6.89-10.5)	(7.46-11.9)	(7.99-13.6)	(8.80-15.9)	(9.41-17.6)		
20-day	5.74	6.43	7.56	8.52	9.86	10.9	12.0	13.1	14.6	15.7		
	(4.95-6.56)	(5.53-7.34)	(6.49-8.65)	(7.27-9.79)	(8.15-11.6)	(8.82-13.0)	(9.37-14.6)	(9.83-16.3)	(10.5-18.5)	(11.1-20.2)		
30-day	7.03	7.89	9.26	10.4	11.9	13.0	14.1	15.2	16.7	17.7		
	(6.10-7.96)	(6.84-8.93)	(8.00-10.5)	(8.92-11.8)	(9.87-13.8)	(10.6-15.3)	(11.1-17.0)	(11.5-18.7)	(12.1-20.9)	(12.6-22.6)		
45-day	8.68	9.76	11.4	12.8	14.5	15.8	17.0	18.1	19.5	20.5		
	(7.60-9.73)	(8.52-10.9)	(9.96-12.9)	(11.1-14.4)	(12.1-16.6)	(12.9-18.3)	(13.4-20.1)	(13.7-21.9)	(14.3-24.2)	(14.7-25.9)		
60-day	10.1	11.4	13.3	14.8	16.8	18.1	19.4	20.6	22.0	22.9		
	(8.89-11.3)	(9.98-12.7)	(11.7-14.9)	(12.9-16.6)	(14.0-19.0)	(14.9-20.9)	(15.4-22.8)	(15.7-24.7)	(16.2-27.0)	(16.5-28.8)		

Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

NOAA Atlas 14

NOAA

NOAA's National Weather Service

Hydrometeorological Design Studies Center

Site Map

Organization

News

Precipitation Frequency Data Server (PFDS)

Home

Regionality of Temporal Distribution

HUFF ANALYSIS

HUFF

- 12 year Record
- 261 Storms

NOAA Temporals

- 69 year record rainfall (Volume 8)
- 111,000 + precipitation cases

WHY USE TEMPORALS ?

USE RAINFALL DISTRIBUTIONS FROM ATLAS 14

"If rout[ing] flow, especially if have significant amounts of storage, the unit hydrograph and rainfall distribution [MSE3/Type II] used have much less impact" (MnDOT Atlas 14 Document)

THE SCS & NRCS NESTED INTENSITY CURVES ARE GREAT FOR "PEAK" FLOWS

RECOMMENDATION:

- If Flooding occurs [i.e. Storage]
 - Use NOAA Temporal Distributions (Quartile 1-4, 10% 90% Exceedance)
 - Test All Events with xpswmm Global Storms to find Critical Duration Use Ensemble Statistics

HUFF

• Perform all 28 temporals against each 4 durations with Atlas 14 depth per AEP.

GLOBAL STORMS

_		Detune		Our		
	Name	Period	Rainfall	Multiplier	Multiplier	Ensemble Name
	1Q-25-10P-6Hr	25Yr	AT14-V2-1Q-10P-6Hr	\checkmark	3.470	Atlas 14 Quartile 1 - 6
	1Q-25-20P-6Hr	25Yr	AT14-V2-1Q-20P-6Hr		3.470	Atlas 14 Quartile 1 - 6
	1Q-25-30P-6Hr	25Yr	AT14-V2-1Q-30P-6Hr		3.470	Atlas 14 Quartile 1 - 6
	1Q-25-40P-6Hr	25Yr	AT14-V2-1Q-40P-6Hr		3.470	Atlas 14 Quartile 1 - 6
	1Q-25-50P-6Hr	25Yr	AT14-V2-1Q-50P-6Hr		3.470	Atlas 14 Quartile 1 - 6
	1Q-25-60P-6Hr	25Yr	AT14-V2-1Q-60P-6Hr		3.470	Atlas 14 Quartile 1 - 6
	1Q-25-70P-6Hr	25Yr	AT14-V2-1Q-70P-6Hr		3.470	Atlas 14 Quartile 1 - 6
	1Q-25-80P-6Hr	25Yr	AT14-V2-1Q-80P-6Hr		3.470	Atlas 14 Quartile 1 - 6
	1Q-25-90P-6Hr	25Yr	AT14-V2-1Q-90P-6Hr		3.470	Atlas 14 Quartile 1 - 6
	2Q-25-10P-6Hr	25Yr	AT14-V2-2Q-10P-6Hr		3.470	Atlas 14 Quartile 2 - 6
	2Q-25-20P-6Hr	25Yr	AT14-V2-2Q-20P-6Hr		3.470	Atlas 14 Quartile 2 - 6
	2Q-25-30P-6Hr	25Yr	AT14-V2-2Q-30P-6Hr		3.470	Atlas 14 Quartile 2 - 6
	2Q-25-40P-6Hr	25Yr	AT14-V2-2Q-40P-6Hr		3.470	Atlas 14 Quartile 2 - 6
	2Q-25-50P-6Hr	25Yr	AT14-V2-2Q-50P-6Hr		3.470	Atlas 14 Quartile 2 - 6
	2Q-25-60P-6Hr	25Yr	AT14-V2-2Q-60P-6Hr		3.470	Atlas 14 Quartile 2 - 6
	2Q-25-70P-6Hr	25Yr	AT14-V2-2Q-70P-6Hr		3.470	Atlas 14 Quartile 2 - 6
	2Q-25-80I	25Yr	AT14-V2-2Q-80P-6Hr	~	3.470	Atlas 14 Quartile 2 - 6
	2Q-25-90				3.4.	Jan Quartile 2 - 6
	3Q-25-10	SYr	A V2- Q-10 -6F		3.47	Atla 📭 Quartile 3 - 6
	3Q-25-201	- 17 - E	A NAVE AND AND AND		3.4	tlas Quartile 3 - 6
	3Q-25-30		AT14-V2-3Q-30P-6Hr	~	3.470	Atlas 14 Quartile 3 - 6
	3Q-25-401				3.470	Atlas 14 Quartile 3 - 6
	3Q-25-50	SYn	(T14) 2 OP- A V I		3.470	Atlas 14 Quartile 3 - 6
	3Q-25-60				3.470	Atlas 14 Quartile 3 - 6
~	3Q-25-701-0111	2511	AT14-V2-3Q-70P-6Hr	\sim	3.470	Atlas 14 Quartile 3 - 6
~	3Q-25-80P-6Hr	25Yr	AT14-V2-3Q-80P-6Hr		3.470	Atlas 14 Quartile 3 - 6
~	3Q-25-90P-6Hr	25Yr	AT14-V2-3Q-90P-6Hr		3.470	Atlas 14 Quartile 3 - 6
	4Q-25-10P-6Hr	25Yr	AT14-V2-4Q-10P-6Hr		3.470	Atlas 14 Quartile 4 - 6
	4Q-25-20P-6Hr	25Yr	AT14-V2-4Q-20P-6Hr		3.470	Atlas 14 Quartile 4 - 6
	4Q-25-30P-6Hr	25Yr	AT14-V2-4Q-30P-6Hr		3.470	Atlas 14 Quartile 4 - 6
	4Q-25-40P-6Hr	25Yr	AT14-V2-4Q-40P-6Hr		3.470	Atlas 14 Quartile 4 - 6
2	4Q-25-50P-6Hr	25Yr	AT14-V2-4Q-50P-6Hr		3.470	Atlas 14 Quartile 4 - 6
	4Q-25-60P-6Hr	25Yr	AT14-V2-4Q-60P-6Hr	\checkmark	3.470	Atlas 14 Quartile 4 - 6
	4Q-25-70P-6Hr	25Yr	AT14-V2-4Q-70P-6Hr		3.470	Atlas 14 Quartile 4 - 6
~	4Q-25-80P-6Hr	25Yr	AT14-V2-4Q-80P-6Hr		3.470	Atlas 14 Quartile 4 - 6
~	4Q-25-90P-6Hr	25Yr	AT14-V2-4Q-90P-6Hr		3.470	Atlas 14 Quartile 4 - 6

Innovyze[®]

XPS 1D/2D Simulation		
Don't Show Model Status Exit at Simulation End Time Step # Time Used Time Left Efficiency	del Status n End	
Model Adjustment Courant Factor Courant Factor		del Status n End
1D Results Max. Node Iterations Node Max. Flow Change Conduit Min. Time Step Conduit Flooded # Conduits with Normal Flow		
xpswmm - Solve		
CONCURER at Days		
1 / 1 34.52 % <u>S</u> tart <u>P</u> ause <u>C</u> ontinue <u>Stop</u> Exit	1/1	
Start Pause Continue Stop	34.52 % E <u>x</u> it	1/1
<u>Start</u> <u>Pause</u> <u>Continue</u>		34.52 % E <u>x</u> it

Flow at Top of Watershed

Storage Volume - Downstream

CUSTOMER SUCCESS

Innovyze®

MODEL BOTH BASINS

MODEL INFORMATION

- 239 SUB-BASINS
- 1914 NODES
- 651,000 2D GRID CELLS •

MIXED HYDROLOGY

- SWMM RUNOFF w/HORTON
- HMS MODEL & CITY GAGES •

2D INTERBASIN SPILLAGE

Depth (meters) 4.0

3.0

2.0

1.0 0.5 0.0

POTENTIAL

10-acres Site

Hydrology Method:

- SCS Method
- 30% Impervious
- Composite CN 82?
- Will you result in the same runoff volume with 30% @98 and 70% @75?

Innovyze®

Does it make a difference?

Node - ST172

HOW ABOUT 2D?

PERFORMANCE COMPARISON

XDSWMM

BENCHMARKED COMPLEX 2D ONLY 49,265 cells Dell 7510 Precision Laptop (i7) **HEC-RAS 5.0.3** 13 hrs 41 min 28 sec **XDSWMM** 6 hrs 35 min 38 sec (1 core) GPU 9 min 38 sec Quadro **GPU** K1000M **Innovyze**[®]

WHAT IF

Thanks for attending

Matt Anderson, PE CFM Products Manager TELEPHONE: +1 888 554 5022 matt.anderson@innovyze.com

WWW.INNOVYZE.COM

