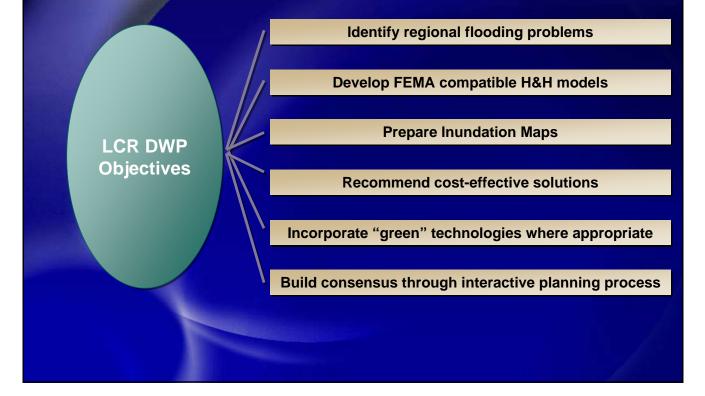
Detailed Unsteady Flow Model Development for the Little Calumet River Watershed

Susen K. Gali, E.I. – CDM Daniel G. Bounds, P.E., D.WRE - CDM Daniel H. Lau, P.E., D. WRE – CDM John Morgan, P.E. – AECOM

IAFSM – March 12, 2009

Agenda

- Metropolitan Water Reclamation District of Greater Chicago (MWRDGC)
- Little Calumet River Watershed Objectives
- Detailed Watershed Plan (DWP) Approach for the Little Calumet River Watershed
- Little Calumet River Watershed Detailed Hydrology and Hydraulic Modeling
- Project Challenges


Metropolitan Water Reclamation District of Greater Chicago

Public Act 93-1049

- Granted authority to MWRDGC to assume responsibilities of stormwater management for Cook County
- Formed Watershed Planning Councils to act as advisory board to MWRD
- Developed Cook County Stormwater Management Plan (CCSMP)
- Initiated development of six DWPs

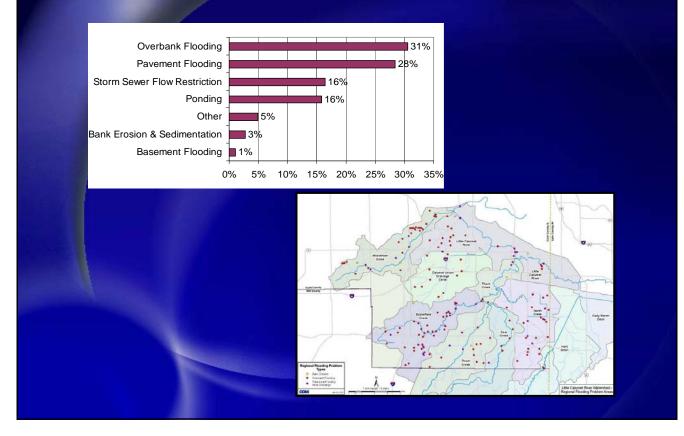
LCR Detailed Watershed Plan Approach

Traditional approach

- Data collection
- Hydrology & Hydraulic analyses
- Alternative development and evaluation
- Recommended plan

LCR Detailed Watershed Plan Watershed Characteristics

- 250 sq mi in IL & IN
- 200 stream miles
- 12 Regional flood control facilities
- 45
 Communities
- Average annual damages of \$5.8 M



- Ten Subwatersheds
- Thornton
 Transitional and
 Composite
 Reservoir
- Two way channel flow
- Combined sewer areas
- Overland flow paths

LCR Detailed Watershed Plan Phase A – Data Collection

- Stormwater flooding problems
- Existing studies
- Existing hydrology & hydraulic models
- Various GIS layers Cook County, NIPC, etc.
- Field reconnaissance
- Gauge data MWRDGC, ISWS, USGS & NWS

LCR Detailed Watershed Plan Phase A – Stormwater Flooding Problems

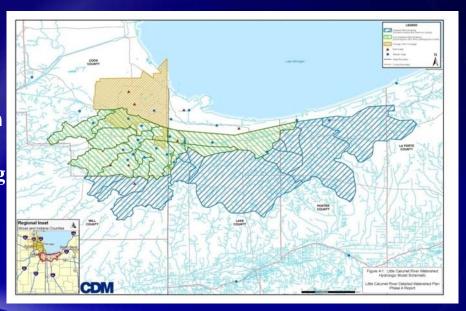
LCR Detailed Watershed Plan Reasons for New Detailed Models

Hydrology models

- Variety of existing models TR-20, Regression Equations, & HEC-1
- Differing rainfall sources TP 40, Bulletin 70
- Land Use of various periods of time
- Hydraulic models
 - Variety of existing models WSP, UNET, HEC-2, FEQ, & HEC-RAS (steady and unsteady)
 - Survey data
- Stormwater flooding problems

LCR Detailed Watershed Plan Phase B – Hydrology & Hydraulic Modeling

- Field survey
- Development of hydrology & hydraulic models
- Production of 100 year inundation maps
- Alternative Analyses In progress
- Benefit Cost Analyses In progress


LCR Detailed Watershed Plan Phase B – Field Survey

- Field survey performed according to FEMA guidelines
- Approximately 1000 XS's were surveyed
- Approximately 350 structures were surveyed

LCR Detailed Watershed Plan Phase B – Hydrology Model Methodology

- NRCS curve number
- Lag time and time of concentration
- Muskingum-Cunge routing method
- A modified Puls channel routing

LCR Detailed Watershed Plan Phase B – Hydrology Modeling

- Hydrologic Data Sources
 - NIPC land use & NRCS soil maps
 - USGS land cover for Indiana
 - Cook County DTM
 - Indiana DEM and USGS DEM (Will County)
 - ◆ ISWS, NWS & Bulletin 70 precipitation

LCR Detailed Watershed Plan Phase B – Hydrology Modeling

- Sub-basin delineation using GIS & HEC-GEOHMS tools
 - Delineated drainage areas greater than 1 sq.mi
 - ♦ 540 sub-basins delineated
- Hydrographs generated using HEC-HMS

LCR Detailed Watershed Plan Phase B – Hydraulic Model Methodology

LCR Detailed Watershed Plan Phase B – Hydraulic Modeling

- Hydraulic Data Sources
 - Recent FIS and Community models
 - ◆ 2008 field survey data
 - Cook County DTM
 - Field reconnaissance
 - As-built plans

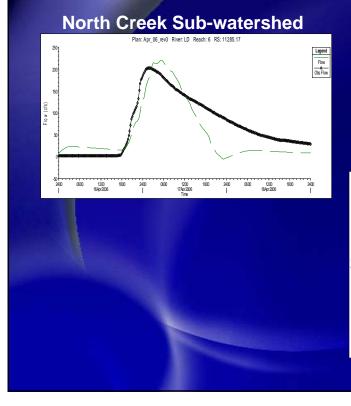
LCR Detailed Watershed Plan Phase B – Hydraulic Modeling

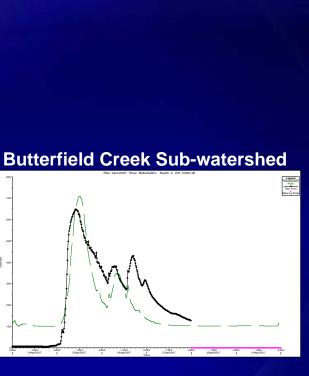
- Eight detailed hydraulic models for LCR has been developed
- All 12 regional flood control facilities were included in the models
- All overland flow paths were included in the models
- Modeled using HEC-RAS 4.0

LCR Detailed Watershed Plan Phase B – Calibration

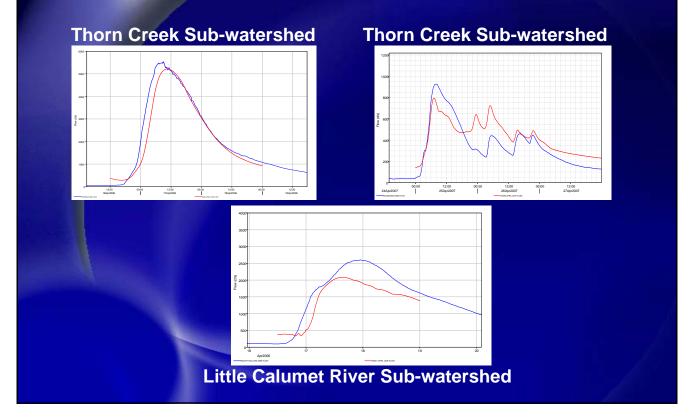
Calibration Storms

- July 1996**
- July 2003
- May 2004
- April 2006**
- April 2007
- August 2007
- ** Flood of record in most of the sub-watersheds


• CCSMP requirements:

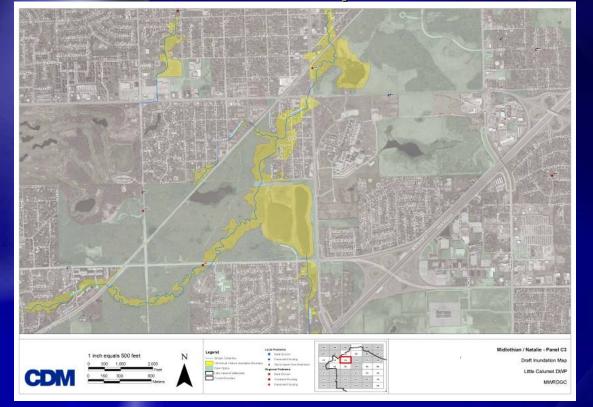

- Water surface elevations within six inches
- Volume and peak flow rates within 30%

North Creek Sub-watershed

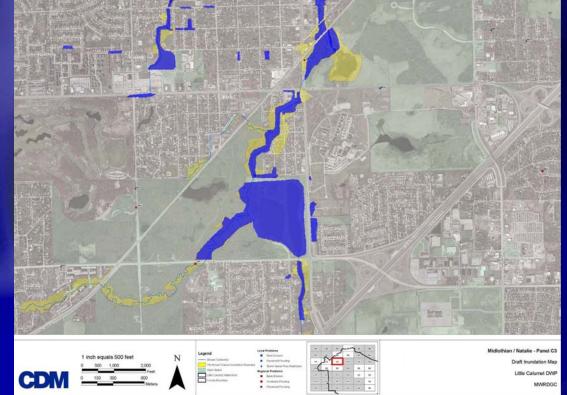

	Storm	Modeled Flow	Observed Flow (cfs)		Observed Stage (ft)
	July 1996	210	208	615.9	616.4
ie	April 2006	221	202	615.9	616.0
-	April 2007	65	61	613.9	613.3
	April 2007	65	61	613.9	613.3

LCR Detailed Watershed Plan Phase B – Calibration Comparisons

LCR Detailed Watershed Plan Phase B – Calibration Comparisons



LCR Detailed Watershed Plan Phase B – Existing Conditions Analyses


Existing Conditions Analyses

- Modeled the 2- through 100-yr frequency events for the 1- to 48-hour duration storms
- Established critical durations for the subwatersheds
- Produced preliminary inundation maps from calibrated models
- Presented inundation maps at the local community workshops for feedback

LCR Detailed Watershed Plan Phase B – Inundation Map

LCR Detailed Watershed Plan Phase B – September 2008 comparison

LCR Detailed Watershed Plan Phase B – Alternative / Benefit Cost Analyses

- Number of problems does not equal to number of solutions (grouping)
- Costs for the recommended alternatives will be developed
- Damages will be estimated for 2 through 100 year storms for existing and proposed alternative conditions
- Benefit Cost Analyses will be performed using the District's Stormwater Planning Database

LCR Detailed Watershed Plan Project Challenges

- Coordination with 45 communities and various agencies
- Unsteady modeling
- Multiple critical durations
- Acceptance of new inundation areas

Acknowledgements:

Molly O'Tool Paminder Parmar Michelle Lewis Lee Guethle Dan Tornil