

2-D Mobile Bed Hydraulic Modeling

Man-made Impacts on the Floodplain of a Highly Erodible Stream

Steven Brown, P.E., CFM Garrett Litteken, P.E., CFM IAFSM 2020 Annual Conference

Introduction

~450-ft Rail Bridge in need of Replacement

- Location: Preston, NE
 - Owned by BNSF

- > Built in early 1940's
- > ~200-ft Overflow Relief Bridge Structure

Today's Presentation

- Project Overview
- > Estimating Scour Potential in Complex Hydraulic Environments Utilizing 1-D Models
- > Can 2-D Models Make this Process Easier?
- Sediment Transport Modeling a useful tool?
- > Results Comparison and Discussion of Findings

1-D HEC-RAS

- Cross-Sections
- River
- Flow Paths
- Banks
- Bridge (Multiple Opening)
- Ineffective Areas

Goals

- Quantify Floodplain Impacts (Permit)
- Estimate Scour Potential (Design)

Bathymetric Survey

Existing Scour

Hydrology

Big Nemaha River

Water Year	Date \$	Height \$ (feet)	flow (cfs)	
1973	B Aug	. 12, 1973		32.71
1958	3 Jul.	10, 1958		31.50
1900	mar. 27, 1960	23.90	20,000	
1961	Sep. 30, 1961	24.58	17,800	
1954	Jun. 17, 1954	22.97	17,100	
1964	Jun. 17, 1964	22.20	13,800	
1969	May 07, 1969	21.75	13,000	
1957	Jun. 17, 1957	18.35	10,200	
1962	May 28, 1962	19.60	10,100	

35,000	

31,900

Adjusted Project Location			
% Chance Exceedance	Flow (cfs)		
0.2	170,275		
0.5	147,191		
1	130,287		
2	113,823		
5	92,622		
10	76,858		
20	61,057		
50	38,815		
80	24,270		
90	18,863		
95	15,265		
99	10,174		

Calibration

- Regression Equations
- Recent Storm Event
- BFE Determination

Flow Angle of Attack

Flow Angle of Attack

HEC-18 Bridge Scour

April 2012 Publication No. FHWA-HIF-12-003

Hydraulic Engineering Circular No. 18

Evaluating Scour at Bridges
Fifth Edition

U.S. Department of Transportation Federal Highway Administration

Contraction Scour

Pier (Local) Scour

Scour Analysis

Scour Results

Truncated

1-D Model

SRH-2D (Sedimentation and River Hydraulics)

2D Steady State

- Steady Flow No Transport
- Restart Required
- Ensure model accuracy
 - Keep Sediment Transport in Mind
 - Low Resolution Mesh
- 2D Parts
 - Mesh Density and Quality
 - Polygons/Mesh Orientation
 - Topo Surface
 - Materials
 - Boundary Conditions

Mesh Density and Quality

- Computationally Complex
 - Steady
 - 150,000 elements (computer power)
 - Sediment
 - 40,000 but 30 is better
 - 5-ft to 100-ft
 - Maintain Quality
 - Hole in mesh
 - No Slip

Quadrilateral **Elements**

Surface Terrain

- Stamped Channel
 - HEC-RAS
 - SMS
- Resolution vs Detail

Materials & Boundary Conditions

- Informed by 1D
 - 1-mile to eliminate boundary influence
- Calibration
 - Pressure Flow
 - Levee Overtopping

2D/1D Scour Tool

New Coverage

ur Arc Attributes

ection Arc

ection Arc

oe Stations Options

utment Toe: 0

butment Toe: 0

(ft)

Close

e Arcs

2D Sediment Workflow

- 2 Changes
 - Boundary Condition
 - Materials

Boundary Condition – Sediment Transport

Source? Sediment Transport Equation: Engelund-Hansen Transport Equation Coefficients Non-Transport Equation Dependent Water Temperature: 20.0 Adaptation Coefficients for Suspended Load Deposition Coefficient: 0.25 Erosion Coefficient: 1.0

Defaults

8 Equations

Boundary Conditions - Part 2

- Total Sediment Load
 - Bed Load
 - Suspended Load
 - Wash Load

- Sediment Type
 - FHWA!

Sediment Materials

- Soil Type
- Boring Investigation
 - Detail?
- Level of Influence

Upstream Sediment Inflow

Model Results

Simulation Queue

Available Results

Bed Elevation vs Time

How'd We Do

Comparison Table

Model	1-D HEC-18	2-D HEC-18	2-D Sediment Transport (Pre-Scour)	2-D Sediment Transport (Post-Scour to Bedrock)	2-D Sediment Transport (Post-Scour)
Flow Through Bridge (cfs)	95,317	92,339	92,339	84,700	101,000
Contraction Scour Depth (ft)	27.0	28.7	N/A	12.3	34.8
Contraction Scour Bed Elevation (ft)	806.3	804.6	833.0	820.7	798.22

Questions to ask yourself

- What's the right level of complexity
 - 1D, 2D + 1D HEC18, 2D Sediment Transport
- How much historic data is available?
 - Calibration
- Where do I need borings?
 - How many
 - Is a surface investigation enough
 - Assumptions
 - Risk
- What about the channel
 - Equilibrium
 - Bed forms

Simulation Time

- Steady vs Unsteady
 - 1/4 Speed
 - 1 simulation hour =1.5 real hours
 - Troubleshooting and Iterating

Key Variables

***Start With a Well Calibrated Hydraulic Model!!

- Upstream Boundary Capacity
- Boring Locations
- Soil Distribution
- Equations
- Sediment Depth
- Concentration
- Flow Distribution
- Time

Moral of the Story

HEC18 vs. Sediment Transport

- HEC-18
 - Continued refinement
 - 2D doesn't fit every problem
 - HEC18 2D Informed

- Sediment Transport
 - Black Box
 - Viable Tool
 - Continued improvement and verification
 - Contraction Only

To Be Continued

- Continued Research
 - Unverified approach
 - Incorporating pier scour
 - Long term degradation
- Coming down the pipeline
 - Bank Migration
 - 3D modeling
 - Pier scour
 - Supercomputer?

