MATS-TC: Automating Time of Concentration Through Multidisciplinary Collaboration

2018 IAFSM Annual Conference

Taylor Leahy, PE Andrew C. Reicks,CFM

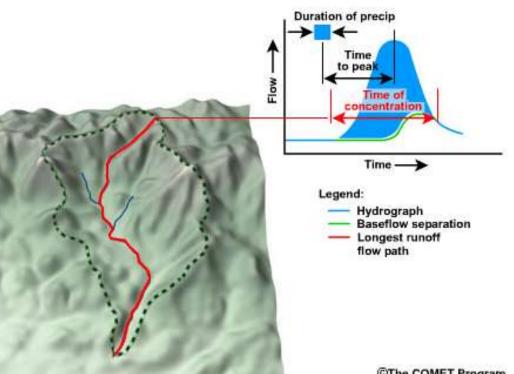
March 15th

MATS-TC: Automating Time of Concentration Through Multidisciplinary Collaboration

- Taylor Leahy, PE
 - Water resources engineer
 - FEMA H&H studies

- Andrew C. Reicks, CFM
 - GIS Specialist
 - Tool Development

Overview


- Time of Concentration
- Previous process
- Full Automation
- Outcome
- Moving Toward the Future

Time of Concentration

Time of Concentration

Time of concentration (Tc) is the time required for runoff to travel from the hydraulically most distant point in the watershed to the outlet.

Timing of Runoff and Response

Velocity Method

- Adds the travel time of various flow types, the sum is the watershed's TC
- Three main flow types
 - Sheet
 - Shallow Concentrated
 - Channel
- Each flow has its own formula for travel time

Travel Time Formulas

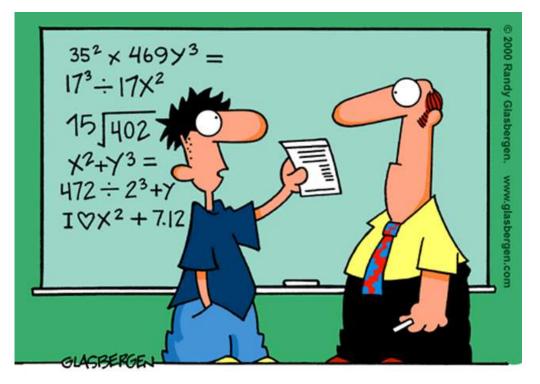
Sheet

$$\mathbf{T}_{t} = \frac{0.007 (n\ell)^{0.8}}{\left(\mathbf{P}_{2}\right)^{0.5} \mathbf{S}^{0.4}} \qquad (\text{eq. 15-8})$$

where:

- $T_t = travel time, h$
- n = Manning's roughness coefficient (table 15–1)
- ℓ = sheet flow length, ft
- P2 = 2-year, 24-hour rainfall, in
- S = slope of land surface, ft/ft
- Shallow Concentration
- Channel

$$V = \frac{1.49r^{\frac{2}{3}}s^{\frac{1}{2}}}{n}$$
(eq. 15–10)
where:
$$V = \text{average velocity, ft/s}$$
$$r = \text{hydraulic radius, ft}$$
$$= \frac{a}{P_w}$$
$$a = \text{cross-sectional flow area, ft}^2$$
$$P_w = \text{wetted perimeter, ft}$$
$$s = \text{slope of the hydraulic grade line (channel slope), ft/ft}$$


n = Manning's n value for open channel flow

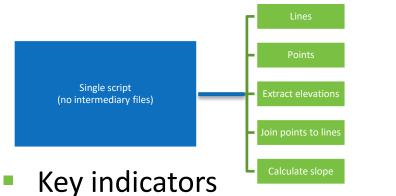
Travel time ($T_{\rm t}$) is the ratio of flow length to flow velocity:

$$T_t = \frac{L}{3600V}$$
 [eq. 3-1]

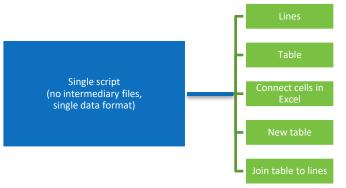
where:

 $\begin{array}{l} T_t = travel \mbox{ time (hr)} \\ L = \mbox{flow length (ft)} \\ V = \mbox{ average velocity (ft/s)} \\ 3600 = \mbox{ conversion factor from seconds to hours.} \end{array}$

"I HAD MY DOCTOR DO A D.N.A. BLOOD ANALYSIS. AS I SUSPECTED, I'M MISSING THE MATH GENE."


Previous Process

Manual Process

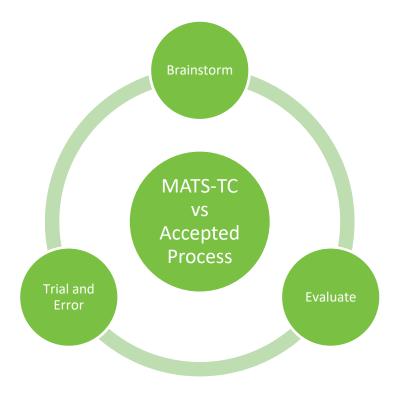

- Inputs created manually
 - Stream widths & depths
 - Stream segment splitting
 - Stream segment attribution
- Data Calculations
 - Data exported, processed, imported back
 - Formula components added manually
 - Large file size

The Beginning

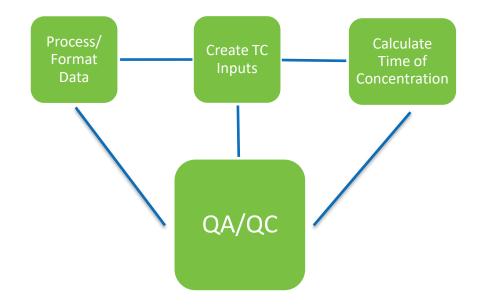
- Simple question
 - Split line segments <u>0 100 feet | 100 feet end</u>
- Questions of increasing complexity
 - Add slope to each segment

Time of concentration calculations

Repetitive; Multiple steps/outputs; Multiple data formats


Full Automation

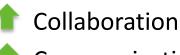
Jumping Off Point


- Automating engineering decisions
 - Feasibility
 - Time
 - Level of effort
 - Accuracy
 - Quality

MATS Process

- Multi-disciplinary Automated Technical Solution
 - Collaborative approach
 - Finding commonalities
 - What's needed/what's possible/what's available
 - Identify critical elements

Outcome


Results and Benefits

TC

- Speed
- Repeatability
- Data Integrity
- Project Time
- Manual Processing
- Subjective Decision Making
- Human Error

MATS

Communication

- Interdisciplinary Understanding

Moving Toward the Future

Next Steps

TC

- Refine as more areas are studied
- Improve error handling and documentation
- Test and update for a variety of different areas and situations

MATS

- Make collaboration contagious
- Increase interdisciplinary understanding
- Apply method to other workflows

s ???

Thank you!

Questions? Please email us:

- Taylor: LeahyT@cdmsmith.com
- Andrew: ReicksA@cdmsmith.com