MATS-TC: Automating Time of Concentration Through Multidisciplinary Collaboration

2018 IAFSM Annual Conference

Taylor Leahy, PE
Andrew C. Reicks, CFM

March 15th
MATS-TC: Automating Time of Concentration Through Multidisciplinary Collaboration

- Taylor Leahy, PE
 - Water resources engineer
 - FEMA H&H studies

- Andrew C. Reicks, CFM
 - GIS Specialist
 - Tool Development
Overview

- Time of Concentration
- Previous process
- Full Automation
- Outcome
- Moving Toward the Future
Time of Concentration
Time of Concentration

- Time of concentration \((T_c)\) is the time required for runoff to travel from the hydraulically most distant point in the watershed to the outlet.
Velocity Method

- Adds the travel time of various flow types, the sum is the watershed’s TC
- Three main flow types
 - Sheet
 - Shallow Concentrated
 - Channel
- Each flow has its own formula for travel time
Travel Time Formulas

- **Sheet**

\[T_t = \frac{0.007(n\ell)^{0.8}}{(P_2)^{0.5}S^{0.4}} \]

(eq. 15–8)

where:

- \(T_t \) = travel time, h
- \(n \) = Manning's roughness coefficient (table 15–1)
- \(\ell \) = sheet flow length, ft
- \(P_2 \) = 2-year, 24-hour rainfall, in
- \(S \) = slope of land surface, ft/ft

- **Shallow Concentration**

- **Channel**

\[V = \frac{1.49r^{\frac{2}{3}}s^{\frac{1}{3}}}{n} \]

(eq. 15–10)

where:

- \(V \) = average velocity, ft/s
- \(r \) = hydraulic radius, ft
- \(a = \frac{a}{P_w} \) = cross-sectional flow area, ft²
- \(P_w \) = wetted perimeter, ft
- \(s \) = slope of the hydraulic grade line (channel slope), ft/ft
- \(n \) = Manning's \(n \) value for open channel flow

Travel time \((T_t)\) is the ratio of flow length to flow velocity:

\[T_t = \frac{L}{3600V} \]

(eq. 3-1)

where:

- \(T_t \) = travel time (hr)
- \(L \) = flow length (ft)
- \(V \) = average velocity (ft/s)
- 3600 = conversion factor from seconds to hours.
"I had my doctor do a DNA blood analysis. As I suspected, I'm missing the math gene."
Previous Process
Manual Process

- Inputs created manually
 - Stream widths & depths
 - Stream segment splitting
 - Stream segment attribution

- Data Calculations
 - Data exported, processed, imported back
 - Formula components added manually
 - Large file size
The Beginning

- Simple question
 - Split line segments 0 – 100 feet | 100 feet – end

- Questions of increasing complexity
 - Add slope to each segment

- Time of concentration calculations

- Key indicators
 - Repetitive; Multiple steps/outputs; Multiple data formats
Full Automation
Jumping Off Point

- Automating engineering decisions
 - Feasibility
 - Time
 - Level of effort
 - Accuracy
 - Quality
MATS Process

- Multi-disciplinary Automated Technical Solution
 - Collaborative approach
 - Finding commonalities
 - What’s needed/what’s possible/what’s available
 - Identify critical elements
MATS-TC

- Process/Format Data
- Create TC Inputs
- Calculate Time of Concentration
- QA/QC
Outcome
Results and Benefits

TC
- Accuracy
- Speed
- Repeatability
- Data Integrity
- Project Time
- Manual Processing
- Subjective Decision Making
- Human Error

MATS
- Collaboration
- Communication
- Innovation
- Interdisciplinary Understanding
Moving Toward the Future
Next Steps

- **TC**
 - Refine as more areas are studied
 - Improve error handling and documentation
 - Test and update for a variety of different areas and situations

- **MATS**
 - Make collaboration contagious
 - Increase interdisciplinary understanding
 - Apply method to other workflows
 - Mats
 - TC
 - ???
Thank you!

- Questions? Please email us:
 - Taylor: LeahyT@cdmsmith.com
 - Andrew: ReicksA@cdmsmith.com