How Recent Rainfall Events Compare to Bulletin 70

Megan Elberts, PE, CFM Christopher B Burke Engineering, Ltd

Presentation Outline

- Background on Precipitation Data Used in Northeastern Illinois
- Recent Rainfall Events
- Analysis Methods
- Analysis Results
- Future Work

Background on Precipitation Data Used in Northeastern Illinois

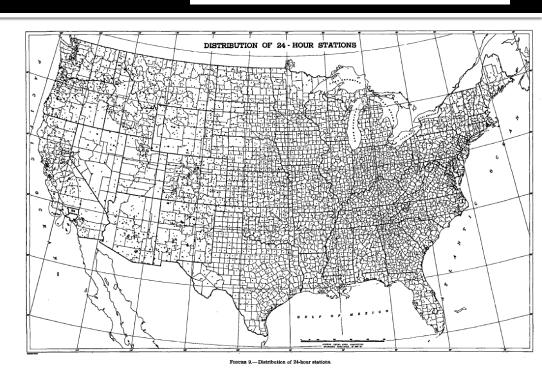
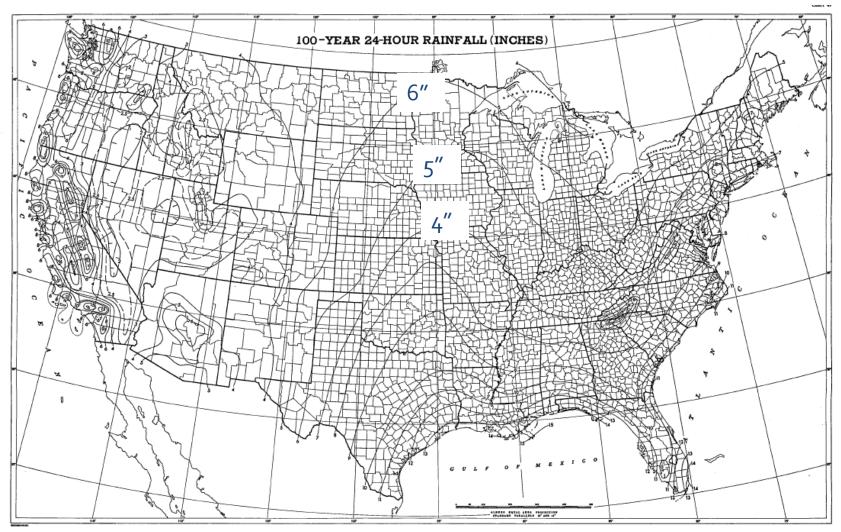
Technical Paper 40

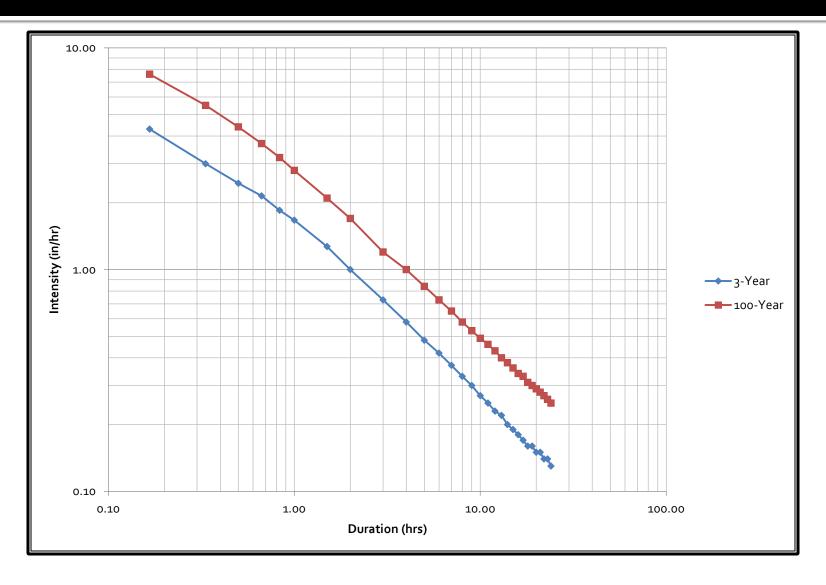
RAINFALL FREQUENCY ATLAS OF THE UNITED STATES

for Durations from 30 Minutes to 24 Hours and Return Periods from 1 to 100 Years

Prepared by
DAVID M. HERSHPIELD
Cooperative Studies Section, Hydrologie Services Divisi
for
Engineering Division, Soll Conservation Service
11.S. Department of Agriculture

- Period of Record
 - An average of 14-48 years
 - Generally through 1958 (54 years ago!)


Table 1 .- Sources of point rainfall data

Duration	No, of stations	Average length of record (yr.)	Reference No.
30-min, to 24-hr Hourly Daily (recording) Daily (nonrecording) Daily (nonrecording)	200	48	8, 9, 10
	2081	14	11, 12
	1350	16	11, 12
	3409	15	13
	1426	47	13

Technical Paper 40

Technical Paper 40 Northeastern Illinois

Technical Letter 13

- Published in 1970 by the Illinois State Water Survey
- Presents rainfall
 frequency data
 presented in Technical
 Letter 1 (February
 1959) & Technical
 Letter 4 (March 1960)

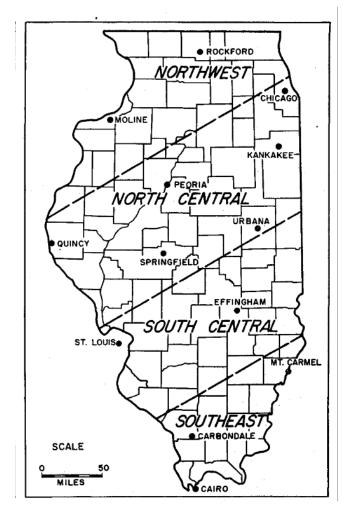


Fig. 1.- Sections of state according to rainfall frequencies

Technical Letter 13

100-year, 24-Hour Rainfall Depths

Section	Rainfall Depth (inches)
Northwest	8.4
North Central	7.2

TABLE 3

AVERAGE RAINFALL FREQUENCY FOR STORM PERIODS OF 1 TO 10 DAYS

Average Recurrence	,	Northwest	Section			
Interval (years)	Depth 1	(inches)	for Given	Storm 5	Periods 10	(days)
2 5 10 25 50 100	2.6 3.6 4.4 5.7 7.2 8.4	2.9 3.9 4.8 6.2 7.5 9.2	3.1 4.2 5.3 6.9 8.4 10.0	3.5 4.8 6.0 7.8 9.4 11.2	4.2 5.8 7.1 9.3 11.4 13.2	•
	No	rth Centi	ral Section	<u>n</u>		
	<u>1</u>	2	<u>3</u>	5	10	
2 5 10 25 50 100	2.6 3.4 4.0 5.1 6.1 7.2	2.8 3.7 4.4 5.6 6.6 7.9	3.0 4.8 6.2 7.3 8.7	3.4 4.5 5.6 7.0 8.2 9.9	4.1 5.5 6.7 8.5 9.9 11.8	
	. So	uth Centi	al Section	<u>n</u>		
	<u>1</u>	<u>2</u>	<u>3</u>	5	10	
2 5 10 25 50 100	2.7 3.7 4.5 5.8 7.0 8.4	3.0 4.9 6.3 7.5 9.1	3.3 4.4 5.5 7.0 8.4 10.0	3.8 5.2 6.3 8.0 9.5 11.5	4.5 6.3 7.7 9.8 11.7 13.9	
		Southeast	Section			
	1	2	<u>3</u>	<u>5</u>	10	
2 5 10 25 50 100	3.2 4.2 4.9 6.3 7.3 8.8	3.4 4.5 5.4 6.8 7.9 9.5	3.7 4.9 6.0 7.6 8.6 10.4	4.2 5.7 6.8 8.5 9.7 11.9	5.2 6.8 8.1 10.3 11.7 14.3	

Bulletin 70

- Rainfall Distributions and Hydroclimatic
 Characteristics of Heavy Rainstorms in Illinois
 - Illinois State Water Survey
 - Huff, F. A., and J. R. Angel
- Published in 1989
- 61-stations
- Two 40-year periods of daily (24-hour) rainfall
 - **1**901-1940
 - **1**941-1980

Bulletin 70

Table 11. Avera	age Ratios of X-Hour/
24-Hour Ra	ainfall for Illinois

Rain period	Ratio,
(hours)	x-hr /24-hr
0.08 (5 min.)	0.12
0.1 7 (10 min.)	0.21
0.25	0.27
0.50	0.37
1	0.47
2	0.58
3	0.64
6	0.75
12	0.87
18	0.94

	Storm Duration	Ratio Used to Derive Rainfall Depth
	5 Minutes	0.12
	10 Minutes	0.22
	15 Minutes	0.27
	30 Minutes	0.37
	1 Hour	0.47
	2 Hours	0.59
	3 Hours	0.64
	6 Hours	0.75
	12 Hours	0.87
7	18 Hours	0.92

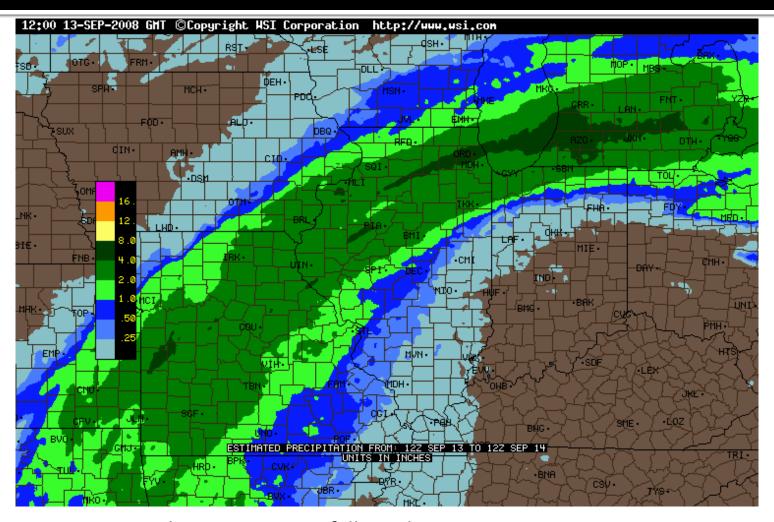
Table 13. Sectional Frequency Distributions for Storm Periods of 5 Minutes to 10 Days and Recurrence Intervals of 2 Months to 100 Years

Ca.			
Sto	rm	coa	es

Sectional (zone) codes

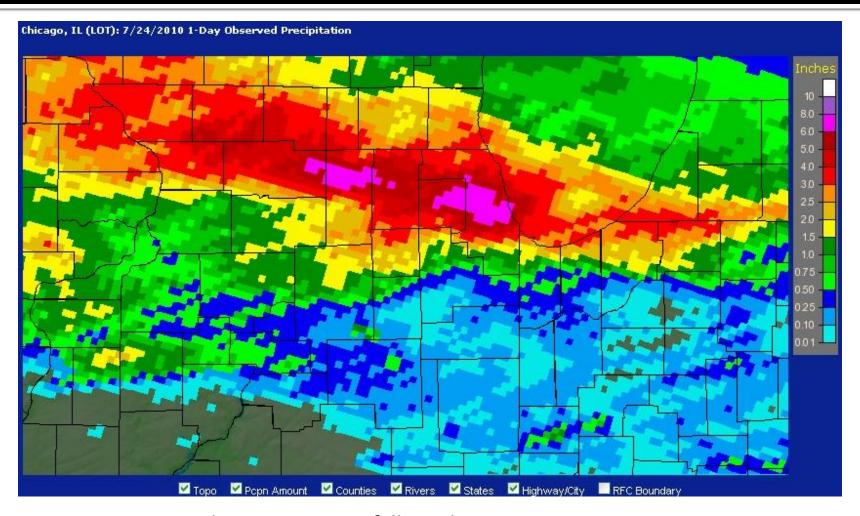
10 - South

Storm	COGCS	Deciminat (2011e) could
1 - 10 days 2 - 5 days 3 - 72 hours 4 - 48 hours 5 - 24 hours 6 - 18 hours 7 - 12 hours 8 - 6 hours	9 - 3 hours 10 - 2 hours 11 - 1 hour 12 - 30 minutes 13 - 15 minutes 14 - 10 minutes 15 - 5 minutes	1 - Northwest 2 - Northeast 3 - West 4 - Central 5 - East 6 - West Southwest 7 - East Southwest 8 - Southwest 9 - Southeast

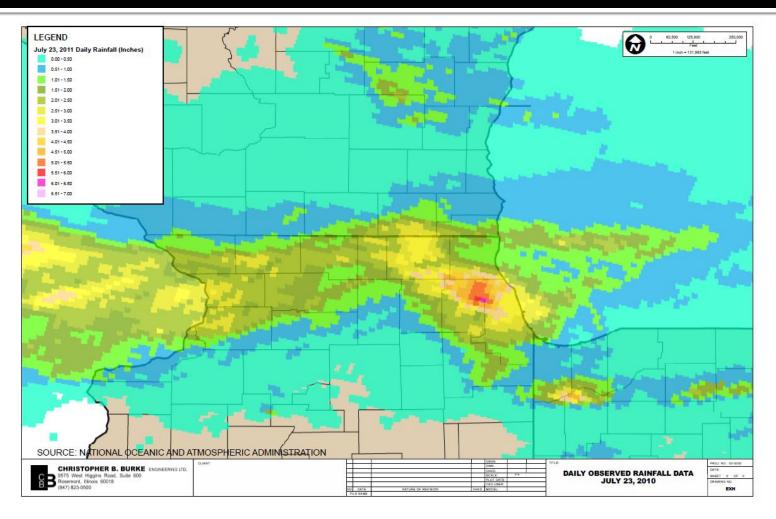

Rainfall (inches) for given recurrence interval

Storm	Zone	2-	3-	4-	6-	9-	1-	2-	5-	10-	25-	50-	100-
code	code	month	month	month	month	month	year.	year	year	year	year	year	year
1	1 2 3 4 5 6 7 8 9	2.14 2.02 2.27 2.10 2.13 2.16 2.30 2.22 2.30 2.55	2.60 2.48 2.78 2.58 2.62 2.65 2.80 2.74 2.88 3.15	2.97 2.80 3.13 2.92 2.96 2.96 3.16 3.09 3.23 3.58	3.50 3.68 3.68 3.48 3.52 3.70 3.63 3.80 4.21	4.02 3.79 4.23 3.93 4.00 4.05 4.27 4.18 4.33 4.84	4.37 4.60 4.29 4.35 4.64 4.64 4.54 5.26	5.23 4.95 5.60 5.12 5.15 5.58 5.54 6.36	6.30 6.04 6.91 6.27 6.21 6.62 6.80 7.09 7.81	7.14 6.89 7.89 7.10 6.97 7.45 7.61 7.80 8.07 8.90	8.39 8.18 9.24 8.19 8.04 8.66 9.20 9.54 10.34	9.64 9.38 10.36 9.10 8.90 9.79 9.70 10.64 10.68 11.36	11.09 11.14 11.90 10.18 9.92 11.26 10.87 11.81 11.79 12.50
222222222	1 2 3 4 5 6 7 8 9	1.76 1.66 1.92 1.77 1.75 1.77 1.85 1.85 1.90 2.09	2.12 1.98 2.30 2.12 2.10 2.13 2.22 2.21 2.29 2.52	2.38 2.56 2.56 2.37 2.37 2.39 2.50 2.49 2.59 2.83	2.76 2.60 2.97 2.78 2.75 2.78 2.90 2.90 3.00 3.29	3.17 2.99 3.41 3.20 3.15 3.31 3.31 3.45	3.45 3.25 3.71 3.48 3.42 3.63 3.63 4.75	4.13 3.93 4.57 4.17 4.12 4.19 4.34 4.40 4.48 4.99	5.10 4.91 5.80 5.11 4.96 5.32 5.33 5.46 5.57 6.20	5.91 5.70 6.65 5.84 5.67 6.20 6.11 6.34 6.50 7.21	7.21 6.93 7.90 6.76 7.44 7.28 7.68 7.91 8.45	8.36 8.04 8.95 7.98 7.65 8.53 8.37 8.88 9.16	9.97 9.96 10.50 9.21 8.78 9.93 9.65 10.68 10.57
MMMMMMMM	1 2 3 4 5 6 7 8 9	1.58 1.72 1.59 1.61 1.63 1.62 1.67 1.73	1.90 1.83 2.05 1.91 1.93 1.95 1.97 2.02	2.11 2.02 2.28 2.12 2.16 2.16 2.15 2.20 2.25 2.49	2.45 2.64 2.48 2.50 2.50 2.54 2.62	2.82 2.70 3.02 2.80 2.85 2.88 2.87 2.93 3.00 3.30	3.06 2.93 3.30 3.05 3.10 3.12 3.22 3.27 3.59	3.73 3.55 4.08 3.70 3.71 3.81 3.73 3.94 3.92 4.36	4.67 4.44 5.11 4.55 4.85 4.86 4.92 4.92 5.48	5.42 5.18 5.26 5.20 5.68 5.32 5.74 5.75 6.34	6.59 6.32 6.97 6.15 6.84 6.39 7.05 7.53	7.64 7.41 7.95 7.25 6.97 7.76 7.35 8.12 8.23	8.87 8.78 9.48 8.16 7.83 8.92 8.54 9.55 9.40 9.52
444444444444	1 2 3 4 5 6 7 8 9	1.47 1.44 1.61 1.48 1.51 1.52 1.52 1.57 1.59	1.74 1.70 1.88 1.76 1.77 1.81 1.78 1.85 1.85	1.93 1.90 2.09 1.95 1.95 2.00 1.98 2.06 2.07 2.31	2.24 2.42 2.42 2.25 2.30 2.38 2.40 2.65	2.58 2.76 2.58 2.57 2.64 2.75 2.76 3.02	2.80 2.70 3.01 2.81 2.82 2.87 2.87 2.97 3.00 3.30	3.42 3.38 3.40 3.49 3.49 3.59 3.60 4.00	4.28 4.09 4.56 4.19 4.16 4.26 4.52 4.52 5.03	4.96 4.81 5.50 4.86 4.77 5.21 4.88 5.26 5.28	6.07 5.88 6.45 5.66 6.28 6.48 6.43	7.02 6.84 7.56 6.62 6.40 7.12 6.75 7.36 7.58 7.86	8.07 8.16 8.80 7.51 7.16 8.19 8.81 8.62 8.79
	1 2 3 4 5 6 7 8 9	1.40 1.38 1.53 1.39 1.36 1.42 1.40 1.49 1.49	1.64 1.61 1.77 1.63 1.58 1.66 1.63 1.73 1.68	1.80 1.76 1.95 1.80 1.75 1.84 1.90 1.85 2.10	2.08 2.03 2.24 2.04 2.00 2.10 2.07 2.20 2.12 2.41	2.36 2.56 2.56 2.32 2.32 2.35 2.35 2.48 2.41 2.74	2.57 2.51 2.79 2.52 2.47 2.59 2.55 2.71 2.62	3.11 3.04 3.45 3.02 3.01 3.11 3.03 3.28 3.16	3.95 3.80 4.29 3.76 3.71 3.80 4.13 4.00	4.63 4.47 4.93 4.45 4.65 4.64 4.76 4.62 5.21	5.60 5.51 6.07 5.32 5.04 5.37 6.02 5.79 6.23	6.53 6.46 7.04 6.08 5.8: 6.46 6.23 7.07 6.71	7.36 7.58 8.20 6.92 6.61 7.45 7.41 8.21 7.73 8.27

100 Year, NE IL 7.58"


Recent Storm Events

September 2008 Storm Event


The 24-Hour Rainfall Total at O'Hare was 6.83"

July 2010 Storm Event

The 24-Hour Rainfall Total at O'Hare was 6.39"

July 2011 Storm Event

The 24-Hour Rainfall Total at O'Hare was 8.21"

Summary of Recent Events

	24-Hour Rainfall Depth (inches)							
Station	August 13-14, 1987	July 17-18, 1996	September 12-13, 2008	July 23-24, 2010	July 22-23, 2011			
Argonne	1.07 ^a	11.56ª	4.03 ^a					
Aurora	4.25 ^a	17.04ª	5.28ª	2.76 ^c	2.92 ^b			
Elgin	7.26ª	3.24 ^a	5.68ª					
Midway	1.80 ^c	8.6o ^c	6.83 ^c	5.70 ^c	8.6o ^c			
O'Hare	9.35ª	2.63ª	6.83ª	6.39 ^b	8.21 ^b			
Wheaton	7.26ª	9.52ª	5.27 ^a					
Wheeling			4.38 ^c	2.99 ^c	6.06 ^c			

Sources: a Data Provided by DuPage County

^b Data Provided by Illinois State Water Survey

^c Data Provided by the National Climatic Data Center

^d Data Provided by United State Geological Survey

Rainfall Analysis Methods

Methods

GUMBEL EXTREME VALUE (TYPE 1) DISTRIBUTION

$$p_t^{Tr} = \overline{p} + K_G s$$

Where

 \overline{p} is the arithmetic average of the rainfall data K_G is the Gumbel Extreme Value frequency factor s is the standard deviation of the rainfall data

Methods

LOG PEARSON TYPE III DISTRIBUTION

$$\log(p_t^{Tr}) = \overline{y} + K_{LP3} s_y$$

Where

 \overline{y} is the arithmetic average of the log transformed rainfall data K_{LP3} is the Log Pearson Type III frequency factor s_y is the standard deviation of the log transformed rainfall data

Methods

PLOTTING POSITION FORMULA

$$T_r = \frac{N+1}{i}$$

Where

 T_r is the calculated return period

i is the numerical rank of the storm event

N is the total number of storm events in the data set

Data Considerations

CALENDAR DAY

24-Hour Totals for a specific day

24-HOUR MAXIMUM

Rolling 24-Hour Totals
Picks up storms that straddle over
two calendar days

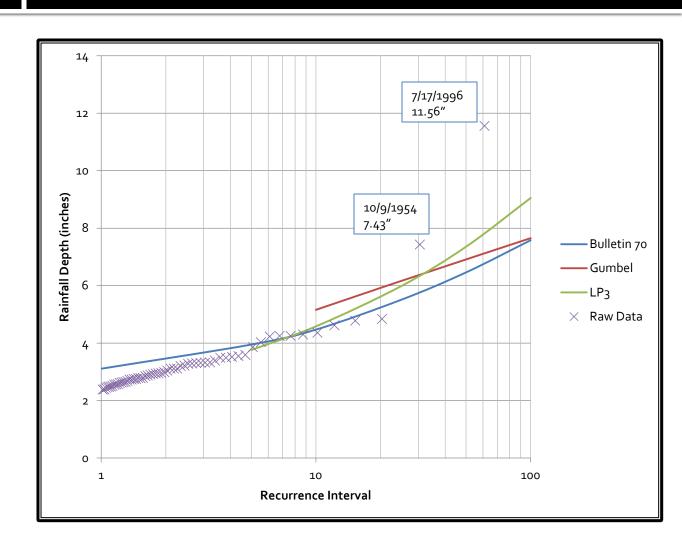
PARTIAL DURATION

The Top N Events in the data set

N=the number of years

ANNUAL DURATION

The Largest Event in Each Calendar Year

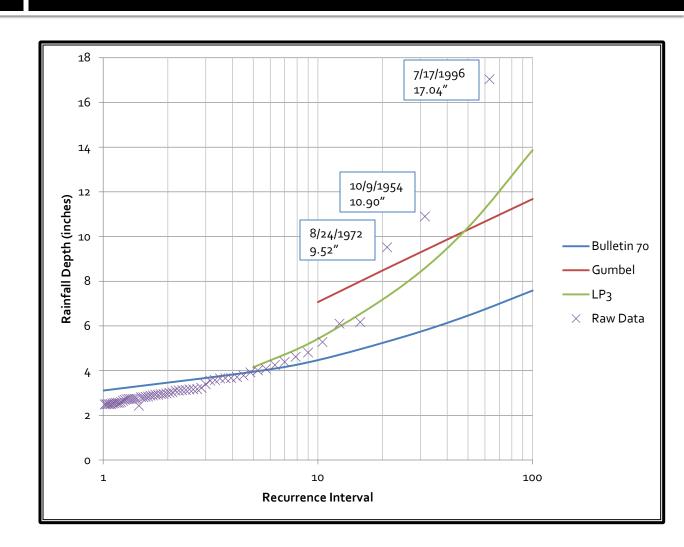

Rainfall Analysis Results

ARGONNE

Period of Record: 1948-2008

Type of Data: Hourly

Data Provided by: DuPage County

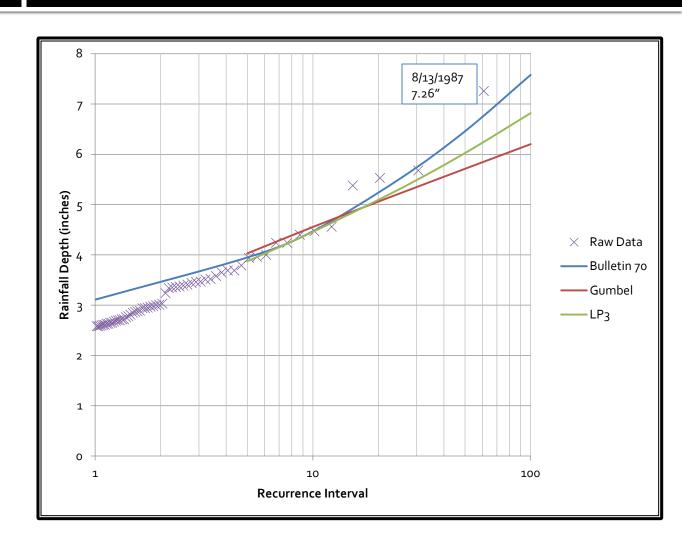


AURORA

Period of Record: 1948-2011

Type of Data: Hourly

Data Provided by:
DuPage County &
Illinois State Water
Survey –Midwest
Regional Climate Center

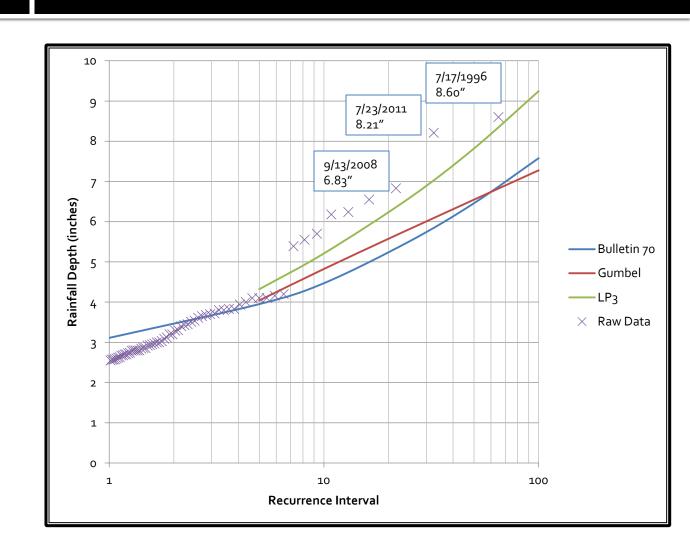


ELGIN

Period of Record: 1948-2008

Type of Data: Hourly

Data Provided by: DuPage County

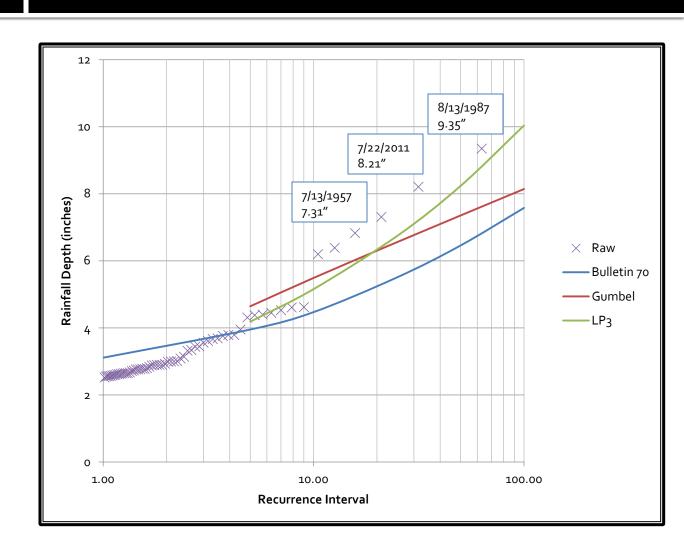

MIDWAY

Period of Record: 1948-2011

Type of Data: Hourly

Data Provided by: National Climatic Data Center, National Oceanic and Atmospheric Administration

Analysis by: Victor Martinez, Graduate Student of Prof. Christopher Burke at University of Illinois at Chicago (2011)

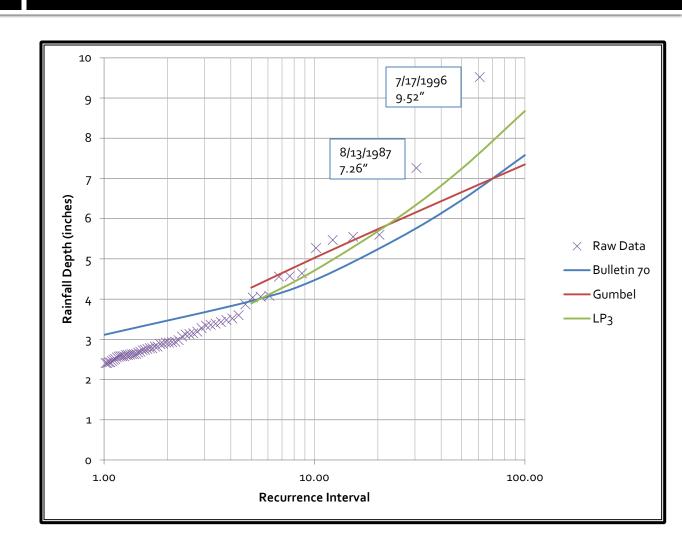


O'HARE

Period of Record: 1948-2011

Type of Data: Hourly

Data Provided by:
DuPage County &
Illinois State Water
Survey –Midwest
Regional Climate Center



WHEATON

Period of Record: 1948-2008

Type of Data: Hourly

Data Provided by: DuPage County

Gumbel Analysis Summary Table

Rainfall Depth (inches)

Station	Frequency							
Station	5	10	25	50	100			
Argonne	4.36	5.16	6.16	6.91	7.65			
Aurora	4.99	7.18	9.94	11.99	14.02			
Elgin	4.03	4.56	5.22	5.71	6.20			
Midway	4.04	4.83	5.81	6.55	7.28			
O'Hare	4.64	5.49	6.56	7.35	8.14			
Wheaton	4.29	5.03	5.96	6.66	7.35			
Bulletin 70	3.80	4.47	5.51	6.46	7.58			

Log Pearson Type 3 Analysis Summary Table

Rainfall Depth (inches)

Station	Frequency							
Station	5	10	25	50	100			
Argonne	3.76	4.58	5.99	7.35	9.05			
Aurora	4.15	5.43	7.83	10.39	13.83			
Elgin	3.87	4.46	5.31	6.03	6.82			
Midway	4.32	5.21	6.59	7.82	9.25			
O'Hare	4.19	5.16	6.75	8.24	10.04			
Wheaton	3.89	4.71	6.03	7.24	8.68			
Bulletin 70	3.80	4.47	5.51	6.46	7.58			

Comparing 100-Year Events to Bulletin 70

Station	100-Year Gumbel Rainfall Depth	100-Year Log Pearson Type 3 Rainfall Depth
Argonne	o.o7" higher than Bulletin 70	1.47" higher than Bulletin 70
Aurora*	6.44" higher than Bulletin 70	6.25" higher than Bulletin 70
Elgin	1.38" lower than Bulletin 70	o.76" lower than Bulletin 70
Midway	o.30" lower than Bulletin 70	1.67" higher than Bulletin 70
O'Hare	o.56 "higher than Bulletin 70	2.46" higher than Bulletin 70
Wheaton	o.23" lower than Bulletin 70	1.10" higher than Bulletin 70

^{*}Data skewed by July 1996 event, this data point may be an outlier, further analysis required

Conclusions

Future Work

- Remove any outliers from completed analysis
- Complete analysis of other hourly rainfall data available
- Complete analysis for other storm durations
- Determine an appropriate distribution for northeastern Illinois
- Create regionally varied rainfall depths and new Intensity-Duration-Frequency Curves for northeastern Illinois

Questions and Comments

Megan Elberts
melberts@cbbel.com