Overview of Presentation

Background

Motivations

What Is Currently Provided?
- USGS Provisional Inundation Map
- DuPage County Flood Forecasting Simulations

What Are We Working on Now?
- Inundation Maps
- Peak Flood Depth Maps
- Dynamic Flood Inundation Maps

Where Are We Going?
- Animated Flood Inundation Maps and Features

Applications and Users

Contributors

Summary

Questions
Background

DuPage County, Illinois

- Suburbs of Chicago
- Nearly 1 million residents
- Highly impervious
- Terrain is relatively flat
- Watersheds: Des Plaines River, DuPage River (East and West Branches), Fox River, and Salt Creek
Background

Stormwater Management in DuPage County

- Countywide program established in 1989
- Guided by the Stormwater Management Planning Committee and Plan
- Enforce the Countywide Stormwater Management and Floodplain Ordinance
- Flood control facilities have a floodwater capacity of nearly 6 billion gallons
- FY17 operating budget $7.1 million

Stormwater Department Programs

- Flood Control Operations and Maintenance
- Floodplain Mapping
- Regulatory Services
- Water Quality
- Watershed Management

http://www.dupageco.org/swm/
Background

Flood Control Facilities

- DuPage County owns and operates 16 flood control facilities
- Includes reservoirs, pump stations, and dams
- 6 facilities are mechanically-operated by staff, remaining are gravity-operated
- Floodwater capacity of nearly 6 billion gallons

Flood Operations

- Flood forecasting simulations
- Remote operation using rain and stream gages with real time video
DuPage County Flood Control Facilities

Fawell Dam – West Branch DuPage River
Naperville
1.6 billion gallons

Elmhurst Quarry – Salt Creek
Elmhurst
2.7 billion gallons
Motivations

Recent Heavy Precipitation and Flooding Events

- September 12-15, 2008
- July 22-24, 2010
- April 17-18, 2013
- October 13-14, 2017
Motivations

Can we predict when and where a river will cause flooding? Yes!

Flood Forecasting
Simulate future stream levels using hydrologic and hydraulic models with observed stream gage levels and predicted precipitation as input.

Flood Inundation Maps
A map that depicts the portion of land which will be covered by flood waters. Translates observed stream gage levels and simulated results into a 2-D map.

A river overtopping a road
Motivations

Translate Water Elevations into Inundation Maps

• Current condition inundation map based on current stream gage levels

• Future conditions inundation maps linked to flood forecasting simulations based on the predicted rainfall

Hydrograph: a graph showing the river elevation or flow versus time at a specific point in a river.
Currently Provided

U.S. Geological Survey (USGS) Provisional Inundation Map

- Salt Creek at Wood Dale
- Limited area near stream gage
- Library of static maps based upon stream gage levels
- User must determine forecasted level
- https://il.water.usgs.gov/ifhp/dupage/
Currently Provided

Flood Forecast Simulations

- Supports operations of flood control facilities
- Observed stream gage heights modeled with forecast precipitation
- Only Salt Creek and West Branch DuPage River are currently modeled
- East Branch DuPage River to be added in 2019
- Updated every Monday, Wednesday, and Friday; updated every 6 hours during an event
Currently Provided

Hydrologic and Hydraulic Modeling

- Simulations utilize Hydrologic Simulation Program – FORTRAN (HSPF) for the hydrology and Full Equations (FEQ) for the hydraulics.
Currently Provided

Simulation System – Multiple Scenarios

• Various upstream boundary conditions
 o Observed stream gages
 o Entire upstream watershed modeled
• Observed precipitation from rain gages
 o With Quantitative Precipitation Forecast (QPF) for forecast precipitation
 o With manually entered data for forecast precipitation
• Observed precipitation from NEXRAD cells
 o With QPF for forecast precipitation
 o With manually entered data for forecast precipitation
Currently Provided

Multiple Scenarios (continued)

Gage Inputs from USGS and DuPage County

- Precipitation (5- or 15-minute converted to hourly)
- Stream stage
- Stream discharge
Currently Provided

Multiple Scenarios (continued)

Scenario using MPE Data

NEXRAD cells converted to hypothetical gages

Salt Creek HSPF/FEQ
4 hypothetical gages

West Branch HSPF/FEQ
11 hypothetical gages

NWS Multisensor Precipitation Estimates (MPE) Data

MPE
(1-hour total)

- Radar data
- Gage corrected
- 4x4 kilometer grid

Salt Creek – 36 cells

West Branch – 35 cells
Currently Provided

Multiple Scenarios (continued)

Precipitation Forecasts

• Simulations include 72-hour precipitation forecast

• Simulations use QPF: 6-hourly data distributed into 1-hourly values for modeling

• Simulations use Warrenville (WRNI2) and Western Springs (WSPI2) grid points for the West Branch DuPage River and Salt Creek, respectively

• Simulation system allows forecast precipitation values and distribution to be input manually
Currently Provided

Available on our Website

- Includes brief forecast discussion
- 24-hour and 72-hour precipitation forecast
- Facility operation information
 http://ec.dupageco.org/dec/stormwater/watershed/index.html
Currently Provided

Output Hydrographs

Salt Creek
- Irving Park Road (used to predict operation of Wood Dale-Itasca Reservoir)
- Harger Road (used to predict operation of Elmhurst Quarry)
- Prairie Path

West Branch DuPage River
- Near West Chicago
- Near Warrenville
- Fawell Dam (used to predict operation of Fawell Dam)
- Near Naperville
What Are We Working on Now?

Real Time Flood Inundation Maps

- Current condition inundation map based on current stream gage levels
- Future conditions inundation maps linked to flood forecasting simulations based on the predicted rainfall
- Peak conditions map (flood extents and depths)

Process:
- Requires integration of flood forecast system with mapping program
- Utilizing Full Equations (FEQ) modeling output with HEC-RAS Mapper to create maps
- May be updated with each forecast update (currently 6 hour intervals)
What Are We Working on Now?

Process to Create Inundation Maps

- Digital Elevation Model derived from LiDAR (2014)
 - Resolution: 1.5 feet grid
- Clean up, extend, and edit cross-sections
What Are We Working on Now?

Process to Create Inundation Maps

- Extract 2-dimensional cross-sections from the Digital Elevation Model
- Add channel inverts for low flows
- Set parameters required by HEC-RAS model
What Are We Working on Now?

FEQ Output Converted into HEC-RAS Format
What Are We Working on Now?

HEC-RAS Model Input

- Build geometry
- Copy FEQ output into Steady Flow, including internal changes in Water Surfaces
What Are We Working on Now?

HEC-RAS Mapper
- Forcing FEQ output into Mapper
- Not actual hydraulic model
What Are We Working on Now?

Flood Simulations
- Spring 2019 – Add East Branch DuPage River

Inundation Maps
- Fall 2018 – Salt Creek and West Branch DuPage River
- Fall 2019 – East Branch DuPage River
What Are We Working on Now?

Peak Flood Depth Maps

• Static map by watershed

• Peaks of all hydrographs at various times combined

• Flood depths computed from water surface elevations subtracted from Digital Elevation Model

• Conveys severity of extents and depths of flooding for disaster response and recovery

Proof of concept – not actual event
What Are We Working on Now?

Real Time Flood Inundation Maps

• Dynamic maps at each 6-hour time-step from the current condition through the 72-hour forecast
• By watershed – not limited area around gages
• Each flood forecast and set of inundation maps are unique depending on:
 o the current river levels,
 o how much rain falls, and
 o where the rain falls
West Branch DuPage River and Winfield Creek – Current Condition

Proof of concept – not actual event
West Branch DuPage River and Winfield Creek – +6 Hour Condition

Proof of concept – not actual event
West Branch DuPage River and Winfield Creek – +12 Hour Condition

Proof of concept – not actual event
What Are We Working on Now?

Dynamic Flood Inundation Maps

- Web based maps
- Zoom in / out
- By forecast time periods (6-hour time steps)
Where Are We Going?

Real Time Animated Flood Inundation Maps and Features

• Animated maps and features from the current condition through the 72-hour forecast

• Work in progress – may require detailed HEC-RAS models (hydraulic structures)

• No timeline established to complete this portion
Where Are We Going?

Animated Maps

- Animation of flood depths showing flood forecast at hourly time steps over 72 hours in future

Modeling to be utilized for internal demonstration purposes only.
Where Are We Going?

Animated Features

- Animated cross-sectional view showing the water surface elevation at a particular road crossing

Modeling to be utilized for internal demonstration purposes only.
Where Are We Going?

Animated Features

• Animated hydrographs

Modeling to be utilized for internal demonstration purposes only.
Where Are We Going?

Animated Features

• Animated flood profile

Modeling to be utilized for internal demonstration purposes only.
Applications and Users

Applications

- Flood control operations
- Resource allocation and placement
- Evacuations
- Road closures
- Emergency vehicle routing
- Credit for Community Rating System (CRS) program
- Damages documentation for disaster assistance

Users

- DuPage County Stormwater Department
- DuPage County Office of Emergency Management
- DuPage County DU-COMM
- Public Works Departments
- Transportation Departments
- First responders (fire, police)
- Critical facilities (i.e., hospitals)
- Municipalities
- Businesses and residents
Contributors

U.S. Geological Survey (USGS)
USGS Central Midwest Water Science Center in Urbana, Illinois
- Flood forecasting simulations
- Mapping
- Animations

U.S. Army Corps of Engineers Chicago District
- Conversion of FEQ output into HEC-RAS compatible format
- HEC-RAS Mapper
- Animated maps and features examples

DUPage County
Stormwater Management
Summary

Flood Inundation Maps

- Translate observed and simulated water surface elevations onto maps
- Maps provide more information than hydrograph plots
- Dynamic and animated maps
- Zoom to any point in the watershed
- Web based maps support decision-making for multiple users
Questions / Contact Information

Questions?

Contact Information

Kristina Murphy, CFM
Civil Engineer
Kristina.Murphy@dupageco.org
(630) 407-6821

Jessica Spurlock, P.E., CFM
Project Engineer
Jessica.Spurlock@dupageco.org
(630) 407-6714