Stormwater Basin Retrofitting
March 2013
Definition of retrofitting

• The act of installing, fitting, or adapting for use with something older.
Benefits of Stormwater Detention

- Reduces peak flows downstream of developments
Benefits of Stormwater Detention

- Creates open space
 - Recreation opportunity
 - Wildlife habitat
Benefits of Stormwater Detention

- **Water quality**
 - Promotes sedimentation
 - Groundwater infiltration
 - Vegetation absorption of nutrients
 - Filtration of oil, grease and other pollutants from urban runoff
Reasons for Retrofitting
Reasons for Retrofitting

- Flooding
 - Structure flooding
 - Roadway impassible
 - Reduces emergency service weather delays

- Tributary Changes
 - Urbanization
 - Diversions
 - Other stormwater basins

- Old Basin Design
 - Outdated engineering practices
 - Basin overtopping
 - Steep Slopes without safety shelf
Reasons for Retrofitting

• Scour
 – Wall scour
 – Outlet scour
 – Shoreline erosion

• Improve Water Quality / MS4 Permit
 – Retention
 – Wet bottom detention
 – Riparian vegetation

• Maintenance Issues
 – Overgrown
 – Difficult to access
 – Sediment deposit
 – Trash
Reasons for Retrofitting:
Flooding
Flooding

Problems you are likely seeing:

• Flooding homes and streets in developed areas
• Resident complains
• Emergency Vehicles are not able to pass flooding
Flooding

Why should the problem be corrected:

- Ensure resident safety
- Reduce Municipal liability
- Reduce Public Works time and cost
Flooding

Solutions:

• Increase conveyance to stormwater basin
 – Increase size of storm sewer
 – Overland flood routing

• Increase the volume of the stormwater basin
 – Adjacent On-site ($50,000/ac-ft)
 – Lower Invert On-site ($65,000/ac-ft)
 – Upstream ($75,000/ac-ft)
 – Underground ($250,000/ac-ft)
Flooding

Solutions:

- **Multi-stage outlets**
 - Two (2) or more outlet pipes to control the flow of stormwater
 - Establish Goals
 1. Reduce flood overflows from undersized basins
 2. Increase effectiveness of basin for more frequent storm events (10-year)
Flooding

Solutions:

- **Multi-stage Outlets – Reduce Flood Overflows**
 - Excellent for basins that open channel outlets
 - Maintain low-flow outlet
 - Additional conduits
 - Improve outlet as needed
 - Eliminate overflow

- **Existing 40 acre development**
 - 12” pipe outlet, Overflow weir
 - Max Outflow 10-year = 4.8 cfs
 - Max Outflow 100-year = 24.8 cfs

- **Proposed Multi-stage retrofit**
 - 12” pipe outlet, Overflow weir
 - 15” pipe outlet (new)
 - Max Outflow 10-year = 11.6 cfs (>100% increase)
 - Max Outflow 100-year = 17.4 cfs (30% decrease)
Flooding

Solutions:

- **Multi-stage Outlets – Effectiveness for Frequent Storms**
 - Excellent for basins that utilize sensitive downstream sewers
 - Reduce low-flow outlet size
 - Additional conduits
 - Maximize Storage
 - **Existing 40 acre development**
 - 12” pipe outlet, Overflow weir
 - Max Outflow 10-year = 4.9 cfs
 - Max Outflow 100-year = 6.5 cfs
 - **Proposed Multi-stage retrofit**
 - 8” pipe outlet (new), Overflow weir
 - 12” pipe outlet (new)
 - Max Outflow 10-year = 1.9 cfs (61% decrease)
 - Max Outflow 100-year = 7.1 cfs (10% increase)
Flooding

Solutions:

• Multi-stage outlets considerations
 – What kind of flooding is occurring downstream?
 – Should the multi-stage outlet system concentrate on 100-year flood event or more frequent storms (10-year)
 – How is the drainage system downstream functioning?
 • Limited downstream sewer system
 • Open channel / stream
Reasons for Retrofitting:

Tributary Changes
Tributary Changes

Problems you are likely seeing:

- Stormwater no longer fills the stormwater basin during major flooding event
- Dry bottom stormwater basins stay wet most of the year
Tributary Changes

2002

2010
Tributary Changes

Inflow from 350 acres tributary area

- **Existing Conditions (100yr,24hr)**
 - 310 acres of natural area
 - 40 acres of urban area with inline storage
 - Peak 230 cfs
 - Runoff Volume = 140 ac-ft
 - Flow ends at 25 hours

- **Urbanized Conditions**
 - 175 acres of natural area
 - 40 acres of urban area with inline storage
 - Newly created 135 acres of urbanized area with stormwater detention
 - Peak 135 cfs
 - Runoff Volume = 160 ac-ft
 - Flow ends at > 5 days
Tributary Changes

Basin Function

- **Existing Conditions**
 - Max Storage = 26 ac-ft

- **Urbanized Conditions**
 - Max Storage = 18 ac-ft
 - Storage Reduces = 8 ac-ft
Tributary Changes

Why should the problem be corrected:

- Reduce flooding in problematic areas downstream
- Maintain stormwater basins for athletic fields
- Increased pollutant loads from urbanized areas
Solutions:

• Modify stormwater basin outlet
 – Reduce outlet pipe
 – Increase storage volume
 – Increase benefits for major storm events

• Infiltration
 – Install underdrain system
 – Reduce nuisance flows
 – Reinstall dry athletic fields
Tributary Changes

Solutions:

• Two level basin
 – Wet Area
 • Naturalized area with native plants to help in infiltration and evapotranspiration
 – Dry Area
 • Athletic fields
Reasons for Retrofitting:

Old Basin Design
Old Basin Design

Problems you are likely seeing:

- Basin design includes steep slopes and no safety shelf
- Stormwater is overtopping the basin
- Lack of overland flood route
- Stormwater standing in neighborhood
Reason for the problem:

- **Change in engineering rainfall data**
 - Technical Paper 40 (1961) – 100-year event = 5.8” precipitation
 - Bulletin 70 (1989) – 100-year event = 7.58” precipitation
 - 30% increase in precipitation

- **Change in storm distributions**
 - SCS Method, Type II – conservative results
 - Huff Distribution – represent the typical rainfall distribution
Old Basin Design

Reason for the problem:

- **Available Data**
 - Contour Maps
 - OLD – USGS Quadrangle Map / Hydrologic Atlases
 - NEW – 2’ GIS Contours
 - Aerial Photography
Old Basin Design

Reason for the problem:

- **County / Municipal Ordinances**
 - DuPage County
 - Original Ordinance – 1991
 - Latest Update – 2012
 - Kane County
 - Original Ordinance – 1998
 - Latest Update – 2009
 - Lake County
 - Original Ordinance – 1992
 - Latest Update – 2012
 - McHenry County
 - Original Ordinance – 2004
 - Latest Update – 2011
 - Will County
 - Original Ordinance – 1998
 - Latest Update – 2010
 - Cook County
 - Full implementation coming soon
Old Basin Design

Reason for the problem:

• Other revelations
 – Overland flow routes are necessary for all developments
Old Basin Design

Why should the problem be corrected:

- Overtopping leading to flooding downstream
- Flooding upstream of the basin due to undersized storm sewers
- Overland flood routes area undersized and depressional areas are flooding
- Include safety measures
Old Basin Design

Solutions:

- Increase the volume of the basin
 - Added volume upstream, on-site, or underground to new engineering standards
- Multi-stage outlet
 - Improve the performance with additional control
- Increase conveyance to stormwater basin
 - Upsize the storm sewer and inlet structures
Reasons for Retrofitting:

Scour and Erosion
Scour and Erosion

Problems you are likely seeing:

• Erosion along the side of basin
• Scour at the inflow pipes
Scour and Erosion

Why should the problem be corrected:

- Sedimentation from erosion and scour can limit the conveyance of downstream sewer and culverts
- Infrastructure replacement due to scour
- Breach if an above-ground impoundment
Scour and Erosion

Solutions:

• Inflow protection
 – Rock rip-rap at the basin inlet
 – Plunge pool
Scour and Erosion

Solutions:

• Erosion protection
 – Collect the stormwater along the ridge of the basin and drop into basin with catch basin and sewers
 – Use deep rooted native plants to stabilize side and shoreline of basin
Reasons for Retrofitting:

Water Quality
Water Quality

Problems you are likely seeing:

- Stormwater is cloudy
- Odor
- Oil Sheen
Water Quality

Why should the problem be corrected:

• NPDES / MS4 Regulations
• Protection of State / County / Municipal natural areas
• Protection of wildlife
Water Quality

Solutions:

• Sedimentation Areas
 – Located near inflow to basin
 – Use rock check damn to promote sedimentation
 – Maintain as needed

• Increase detention time
 – Use stormwater “run around” to maximize travel distance
 – Use perforated riser
Water Quality

Solutions:

• Naturalize Basin
 – Install wetland, emergent and prairie plants to help remove pollutants
Reasons for Retrofitting:

Difficult to Maintain
Difficult to Maintain

Problems you are likely seeing:

• Cannot access stormwater basin
• Dense invasive species
• Trash
• Cannot locate points of inflow and outflow from basin
Difficult to Maintain

Why should the problem be corrected:

- No easement to access basin
- Stormwater does not move through the basin effectively
- Significant head needed to create flow
- Unable to check or maintain control structures
- Vegetation can plug outlet structures and overtopping can occur.
- Unsightly
Difficult to Maintain

Solutions:

• Obtain easements
 – Actively look for opportunities to obtain easement from property owners

• Natural area maintenance
 – Prescribed burn
 – Overseeding and plugs of low-profile vegetation
 – Maintenance plan and schedule
Questions and Contact Information

Randy Newkirk– Drainage and Environmental Engineer
Office: 847.697.6700
Cell phone: 630.803.7508
Email: rnewkirk@hlreng.com
Website: www.hlrengineering.com