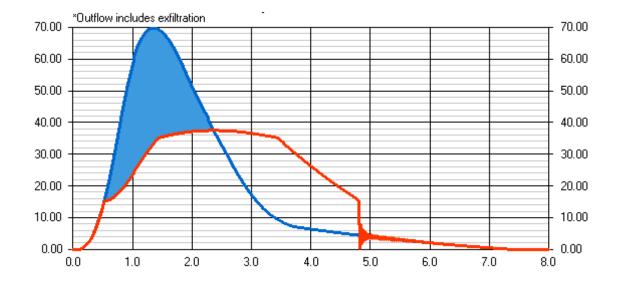


Stormwater Basin Retrofitting

March 2013


Definition of retrofitting

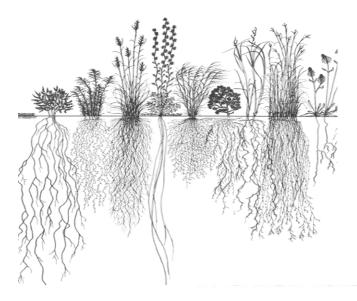
• The act of installing, fitting, or adapting for use with something older.

Benefits of Stormwater Detention

Reduces peak flows downstream of developments

Benefits of Stormwater Detention

- Creates open space
 - Recreation opportunity
 - Wildlife habitat



Benefits of Stormwater Detention

• Water quality

- Promotes sedimentation
- Groundwater infiltration
- Vegetation absorption of nutrients
- Filtration of oil, grease and other pollutants from urban runoff

Reasons for Retrofitting

Reasons for Retrofitting

- Flooding
 - Structure flooding
 - Roadway impassible
 - Reduces emergency service weather delays

• Tributary Changes

- Urbanization
- Diversions
- Other stormwater basins
- Old Basin Design
 - Outdated engineering practices
 - Basin overtopping
 - Steep Slopes without safety shelf

Reasons for Retrofitting

- Scour
 - Wall scour
 - Outlet scour
 - Shoreline erosion

Improve Water Quality / MS4 Permit

- Retention
- Wet bottom detention
- Riparian vegetation

Maintenance Issues

- Overgrown
- Difficult to access
- Sediment deposit
- Trash

Reasons for Retrofitting:

Flooding

Problems you are likely seeing:

 Flooding homes and streets in developed areas

• Emergency Vehicles are not able to pass flooding

Resident complains

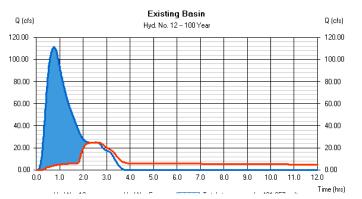
Why should the problem be corrected:

- Ensure resident safety
- Reduce Municipal liability
- Reduce Public Works time and cost

Solutions:

- Increase conveyance
 to stormwater basin
 - Increase size of storm sewer
 - Overland flood routing
- Increase the volume of the stormwater basin
 - Adjacent On-site (\$50,000/ac-ft)
 - Lower Invert On-site (\$65,000/ac-ft)
 - Upstream (\$75,000/ac-ft)
 - Underground (\$250,000/ac-ft)

Solutions:


- Multi-stage outlets
 - Two (2) or more outlet pipes to control the flow of stormwater
 - Establish Goals
 - 1. Reduce flood overflows from undersized basins
 - 2. Increase effectiveness of basin for more frequent storm events (10-year)



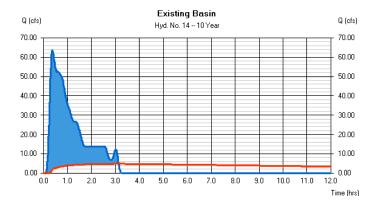
Solutions:

Multi-stage Outlets – Reduce Flood Overflows

- Excellent for basins that open channel outlets
 - Maintain low-flow outlet
 - Additional conduits
 - Improve outlet as needed
 - Eliminate overflow

- Existing 40 acre development

- 12" pipe outlet, Overflow weir
- Max Outflow 10-year = 4.8 cfs
- Max Outflow 100-year = 24.8 cfs


- Proposed Multi-stage retrofit

- 12" pipe outlet, Overflow weir
- 15" pipe outlet (new)
- Max Outflow 10-year = 11.6 cfs (>100% increase)
- Max Outflow 100-year = 17.4 cfs (30% decrease)

Solutions:

Multi-stage Outlets – Effectiveness for Frequent Storms

- Excellent for basins that utilize sensitive downstream sewers
 - Reduce low-flow outlet size
 - Additional conduits
 - Maximize Storage

- Existing 40 acre development

- 12" pipe outlet, Overflow weir
- Max Outflow 10-year = 4.9 cfs
- Max Outflow 100-year = 6.5 cfs

- Proposed Multi-stage retrofit

- 8" pipe outlet (new), Overflow weir
- 12" pipe outlet (new)
- Max Outflow 10-year = 1.9 cfs (61% decrease)
- Max Outflow 100-yer = 7.1 cfs (10% increase)

Solutions:

- Multi-stage outlets considerations
 - What kind of flooding is occurring downstream?
 - Should the multi-stage outlet system concentrate on 100-year flood event or more frequent storms (10-year)
 - How is the drainage system downstream functioning?
 - Limited downstream sewer system
 - Open channel / stream

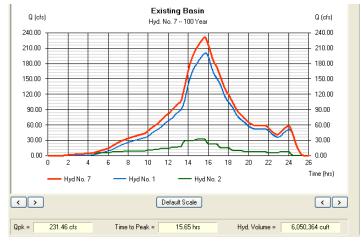
Reasons for Retrofitting:

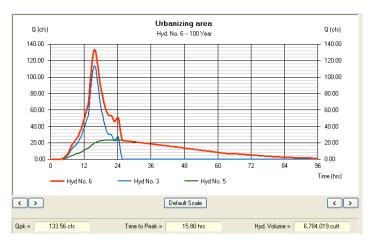
Tributary Changes

Problems you are likely seeing:

 Stormwater no longer fills the stormwater basin during major flooding event

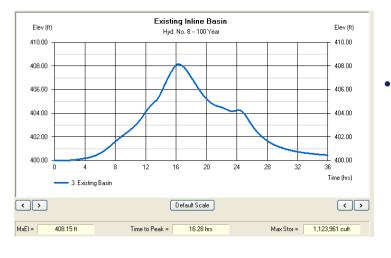
Dry bottom
stormwater
basins stay
wet most of
the year





Inflow

Inflow from 350 acres tributary area


- Existing Conditions (100yr,24hr)
 - 310 acres of natural area
 - 40 acres of urban area with inline storage
 - Peak 230 cfs
 - Runoff Volume = 140 ac-ft
 - Flow ends at 25 hours

Urbanized Conditions

- 175 acres of natural area
- 40 acres of urban area with inline storage
- Newly created 135 acres of urbanized area with stormwater detention
- Peak 135 cfs
- Runoff Volume = 160 ac-ft
- Flow ends at > 5 days

Inflow

Basin Function

Existing Conditions

• Max Storage = 26 ac-ft

- Urbanized Conditions
 - Max Storage = 18 ac-ft
 - Storage Reduces = 8 ac-ft

Why should the problem be corrected:

- Reduce flooding in problematic areas downstream
- Maintain stormwater basins for athletic fields
- Increased pollutant loads from urbanized areas

Solutions:

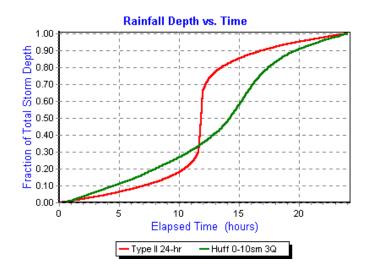
- Modify stormwater basin outlet
 - Reduce outlet pipe
 - Increase storage volume
 - Increase benefits for major storm events
- Infiltration
 - Install underdrain system
 - Reduce nuisance flows
 - Reinstate dry athletic fields

Solutions:

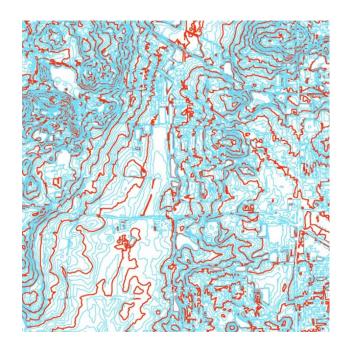
- Two level basin
 - Wet Area
 - Naturalized area with native plants to help in infiltration and evapotranspiration
 - Dry Area
 - Athletic fields

Reasons for Retrofitting:

Old Basin Design


Problems you are likely seeing:

- Basin design includes steeps slopes and no safety shelf
- Stormwater is overtopping the basin
- Lack of overland flood route
- Stormwater standing in neighborhood


- Change in engineering rainfall data
 - Technical Paper 40 (1961) 100-year event = 5.8" precipitation
 - Bulletin 70 (1989) 100-year event = 7.58" precipitation
 - 30% increase in precipitation
 - Change in storm distributions
 - SCS Method, Type
 II conservative
 results
 - Huff Distribution represent the typical rainfall distribution

- Available Data
 - Contour Maps
 - OLD USGS Quadrangle Map / Hydrologic Atlases
 - NEW 2' GIS Contours
 - Aerial Photography

- County / Municipal Ordinances
 - DuPage County
 - Original Ordinance 1991
 - Latest Update 2012
 - Kane County
 - Original Ordinance 1998
 - Latest Update 2009
 - Lake County
 - Original Ordinance 1992
 - Latest Update 2012

- McHenry County
 - Original Ordinance 2004
 - Latest Update 2011
- Will County
 - Original Ordinance 1998
 - Latest Update 2010
- Cook County
 - Full implementation coming soon

- Other revelations
 - Overland flow routes are necessary for all developments

Why should the problem be corrected:

- Overtopping leading to flooding downstream
- Flooding upstream of the basin due to undersized storm sewers
- Overland flood routes area undersized and depressional areas are flooding
- Include safety measures

Solutions:

- Increase the volume of the basin
 - Added volume upstream, on-site, or underground to new engineering standards
- Multi-stage outlet
 - Improve the performance with additional control
- Increase conveyance to stormwater basin
 - Upsize the storm sewer and inlet structures

Reasons for Retrofitting:

Scour and Erosion

Problems you are likely seeing:

- Erosion along the side of basin
- Scour at the inflow pipes

Why should the problem be corrected:

- Sedimentation from erosion and scour can limit the conveyance of downstream sewer and culverts
- Infrastructure replacement due to scour
- Breach if an above-ground impoundment

Solutions:

- Inflow protection
 - Rock rip-rap at the basin inlet
 - Plunge pool

Solutions:

- Erosion protection
 - Collect the stormwater along the ridge of the basin and drop into basin with catch basin and sewers
 - Use deep rooted native plants to stabilize side and shoreline of basin

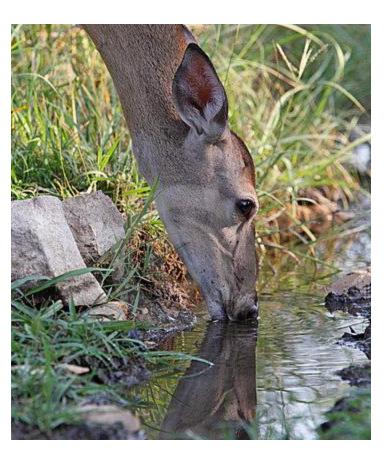
Reasons for Retrofitting:

Water Quality

Water Quality

Problems you are likely seeing:

- Stormwater is cloudy
- Odor
- Oil Sheen



Why should the problem be corrected:

- NPDES / MS4 Regulations
- Protection of State / County / Municipal natural areas
- Protection of wildlife

Water Quality

Solutions:

- Sedimentation Areas
 - Located near inflow to basin
 - Use rock check damn to promote sedimentation
 - Maintain as needed

- Increase detainment time
 - Use stormwater "run around" to maximize travel distance
 - Use perforated riser

Water Quality

Solutions:

Naturalize Basin

 Install wetland, emergent and prairie plants to help remove pollutants

Reasons for Retrofitting:

Difficult to Maintain

Difficult to Maintain

Problems you are likely seeing:

- Cannot access stormwater basin
- Dense invasive species
- Trash
- Cannot locate points of inflow and outflow from basin

Difficult to Maintain

Why should the problem be corrected:

- No easement to access basin
- Stormwater does not move through the basin effectively
- Significant head needed to create flow
- Unable to check or maintain control structures
- Vegetation can plug outlet structures and overtopping can occur.
- Unsightly

Difficult to Maintain

Solutions:

Obtain easements

 Actively look for opportunities to obtain easement from property owners

Natural area maintenance

- Prescribed burn
- Overseeding and plugs of low-profile vegetation
- Maintenance plan and schedule

Questions and Contact Information

Randy Newkirk– Drainage and Environmental Engineer Office: 847.697.6700 Cell phone: 630.803.7508 Email: <u>rnewkirk@hlreng.com</u> Website: www.hlrengineering.com