Plum Creek / Hart Ditch Flooding Watershed Study

March 11, 2009

Christopher B. Burke Engineering

Dave Buckley PE, CFM
Plum Creek / Hart Ditch Watershed

- Will and Cook County Illinois
- Lake County Indiana

36 mi² at State Line (Plum Creek)
71 mi² at Little Calumet River (Hart Ditch)
Study Purpose

- Plum Creek / Hart Ditch Overtopped Banks (August 2007)

- Significant Damages
 - Crete Township
 - Dyer, Indiana
 - Saint Margaret Mercy Healthcare Center
 - Several Subdivisions
Study Purpose

- Plum Creek / Hart Ditch overtopped its banks (August 2007)
 - Property damage (12”-18” in 1st Floor)
 - Roadway closures (confluence area)
 - Isolated from emergency services 30+hrs
Study Objective

- Determine the cause of the August 23rd and 24th, 2007 Flooding

- Identify damage areas and structures in the Plum Creek / Hart Ditch Watershed

- Develop Hydrologic and Hydraulic Models
 - Calibrate August 2007 storm event
 - FIS Flow rates compared to calibrated model
Study Partners

• Crete Township

• Lake County Surveyors Office, Lake County Indiana

• Saint Margaret Mercy Healthcare Centers, Dyer Campus

• Town of Dyer, Indiana
Crete Township Flooding

- Confluence Area
 - 30 mi2 at confluence of Klemme and Plum Creek
FIS Differences IL to IN

• Regulatory Models
 – Illinois and Indiana discrepancies
 • Illinois - HEC 1
 – Three subbasin model
 – FIS flowrate at state line = 2,689 cfs
 • Indiana - Coordinated Discharge Curve
 – FIS flowrate at state line = 1,860 cfs

• 0.5 foot difference in 100-year elevations at State Line
Study Approach
(Hydrologic Gage Data)

Hydrologic Modeling
– Precipitation Gages
 • USGS – Crete and 213th St.
 • CoCoRaHS (Community Collaborative Rain, Hail & Snow Network
 – Community-based network of volunteers
 – Located in Will County
Study Approach
(Hydraulic Gage Data)

- Hydraulic Modeling
 - Stage Gages
 - USGS – Hart Ditch at 213th Street
 - USGS – Hart Ditch at Munster
 - Local High Water Marks
 - Observed; Crete and Dyer
August 2007 Storm Event

- Bulletin 70
 - 100-year, 5-day = 10.9 inches
- Measured
 - 10.2 inches in 5-days
Sunny in Dyer

- August 24, 2007
 - 0.97 inches in Dyer (downstream)
 - Storms moved through area and giving way to sunshine in Dyer
 - 4.94 inches in Crete Township (upstream)

- Flooding came by surprise
August 2007 Storm Event

USGS Gage – 213th Street in Dyer
Regulatory 100-year flow rate, 1910 cfs at 213th St.

Max Stage = 15.66 feet
Max Flow = 2,650 cfs
Calibrated Hydrologic Study

- A detailed hydrologic model was developed using the precipitation and other gage data in the watershed
 - HEC-HMS with 15 subbasins
 - Calibrated to August 2007 storm
 - Gage data from USGS precipitation gages
 - Match flow rate at 213th Street in Dyer
Hydrologic Results at 213th Street

• Measured data
 – Measured vs. Simulated
 • 2,649 cfs vs. 2,645 cfs

• Design data
 – Bulletin 70
 – 100-year critical duration flow rate is more than double the measured flowrate
Hydrologic Calibration

• Determine the 100-year design flowrate at 213th St.
 – Continuous rainfall over a 6-day period
 • Saturated watershed condition
 – 4.94 inches in Crete Township on August 24, 2007
 • No infiltration, large runoff volume

• Initial CNs are assumed to be AMC III
 • Convert AMC values for III condition to II
 • Execute HMS for August 2007 storm event
 • Compare hydrographs at 213th Street
 • 100-year design flowrate = 3,282 cfs
Hydraulic Calibration

• Known water surface elevations
 – Observed during August 2007 event
 • SMMHC
 • Hart Street
 • Subdivisions throughout Dyer

• Calibrate HEC-RAS to match elevations observed and measured
 • Manning’s N values
Expanded Study Purpose

- **September 14th 2008**
 - Flooding Occurred again in the region

- Expand study to identify possible locations for floodwater storage facilities

- Determine flood reduction benefits throughout the watershed
September 13th and 14th 2008

Source: The Times, Munster IN
September 13th and 14th 2008

Source: Lake County Surveyors Office
September 13th and 14th 2008

Source: The Times, Munster IN
September 13th and 14th 2008

Source: Lake County Surveyors Office
September 2008 Storm Event

Precipitation Gages
- **USGS**
- **CoCoRaHS (Community Collaborative Rain, Hail & Snow Network)**

Bulletin 70
- 100-year, 10-day = 12.26”

Nearly 8 inches in 2-days

<table>
<thead>
<tr>
<th>Date</th>
<th>USGS 213th Street Dyer (IN)</th>
<th>USGS Village of Crete (IL)</th>
<th>CoCoRaHS Village of Crete (IL)</th>
<th>CoCoRaHS Crete Township (IL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>09/04/2008</td>
<td>3.71</td>
<td>3.16</td>
<td>0.30</td>
<td>0.34</td>
</tr>
<tr>
<td>09/05/2008</td>
<td>0.05</td>
<td>0.04</td>
<td>3.08</td>
<td>3.48</td>
</tr>
<tr>
<td>09/06/2008</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>09/07/2008</td>
<td>0.09</td>
<td>0.08</td>
<td>0.09</td>
<td>0.11</td>
</tr>
<tr>
<td>09/08/2008</td>
<td>1.31</td>
<td>1.16</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>09/09/2008</td>
<td>0.01</td>
<td>0.04</td>
<td>1.15</td>
<td>1.05</td>
</tr>
<tr>
<td>09/10/2008</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>09/11/2008</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>09/12/2008</td>
<td>0.46</td>
<td>0.40</td>
<td>0.13</td>
<td>0.17</td>
</tr>
<tr>
<td>09/13/2008</td>
<td>4.52</td>
<td>4.08</td>
<td>3.20</td>
<td>3.46</td>
</tr>
<tr>
<td>09/14/2008</td>
<td>3.35</td>
<td>2.96</td>
<td>2.53</td>
<td>2.78</td>
</tr>
<tr>
<td>Total</td>
<td>13.51</td>
<td>11.92</td>
<td>10.51</td>
<td>11.34</td>
</tr>
</tbody>
</table>
September 2008 Storm Event

USGS Gage – 213th Street in Dyer
Regulatory 100-year flow rate, 1910 cfs at 213th St.

Max Stage = 16.76 feet
Max Flow = 3,110 cfs
Modeling Verification

• Execute hydrologic model using the September 2008 precipitation data
 – Match flowrate measured at 213th Street
 • Measured flow = 3,110 cfs
 • Simulated flow = 3,151 cfs
• Enter flowrates into HEC-RAS hydraulic model to verify measured stage at 213th St. gage
Potential Flood Control Reservoir

• Flood storage upstream of flooding areas
 – Identified two locations in Illinois
 • One for the benefit of Crete Township
 • One for the benefit of Indiana

• Utilize flood storage by “cutting off” the peak of the hydrograph
Regional Flood Control Reservoir

Inflow - Outflow Hydrograph at Potential Flood Control Reservoir

Determine reservoir size by diverting volume off the peak
Flood Reduction Benefits

• Determine flowrate reduction utilizing flood storage
• Determine decrease in water surface elevations through damage areas
• Benefits with flood reservoirs
 – Reduction of 1.5 feet in Crete Township
 – Reduction from 2 feet to 0.5 feet in Indiana all the way to the Little Calumet River
Conclusions

• Early Warning system in Crete Township through cooperation with USGS
 – Currently working on forecast of downstream gage heights
 – Time to prepare, utilize an emergency action plan
Challenges

• Regional Flood Control Reservoir
 – Multiple Location(s)
 • Crete Township and Lake Co, IN
 • Upstream of flooding
 • Provide storage in Illinois for Indiana
 • Land Acquisition, public or private
 – Funding
 – Permitting
 – Mapping