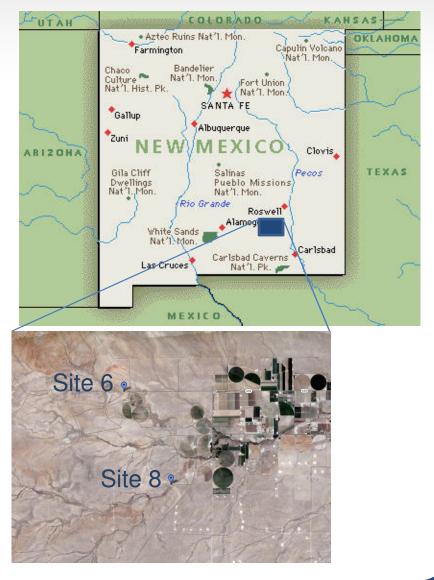


Adam D. James, P.E., CFM Eric Y. Chow, P.E., CFM

NRCS DAM RISK ASSESSMENTS


Sites 6 and 8 Eddy and Chaves Counties, New Mexico

PATRICK project background

Cottonwood – Walnut Creek watershed, drains east to the Pecos River

Purpose – to rank NRCS dams for potential rehabilitation projects

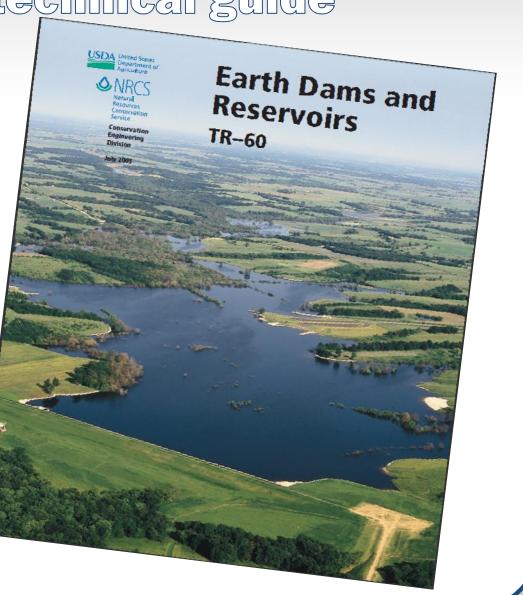
Sites 6 and 8 are single purpose flood retarding structures built by the NRCS in the 1980s

agenda / scope of work

Conduct inspections of dams to assess condition

Analyze in SITES – including verification of input parameters (as-built dimensions, watershed characteristics, precipitation)

Perform breach analysis in HEC-RAS


Prepare breach inundation exhibit

Complete risk profile spreadsheet – "Evaluation of Potential Rehabilitation Projects"

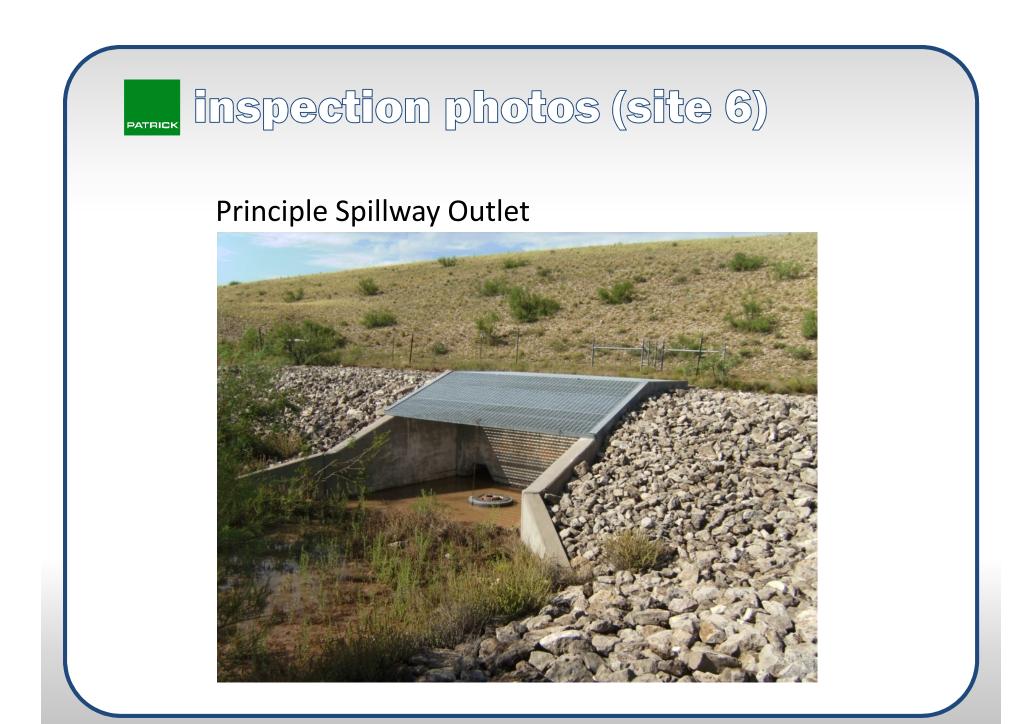
Identify potential rehabilitation alternatives

BATRICK GOVERNING technical guide

NRCS TR-60 (Latest Edition)

53 feet high

8,600 feet long


Tributary area of 49 square miles

4,620 acre-feet of total storage capacity

48 inch dia. concrete-lined steel Principal Spillway

PSW Riser (Inlet)

Inspection photos (site 6)

Structural Auxiliary Spillway

Pockmarks

Inspection photos (site 6)

View from the Top

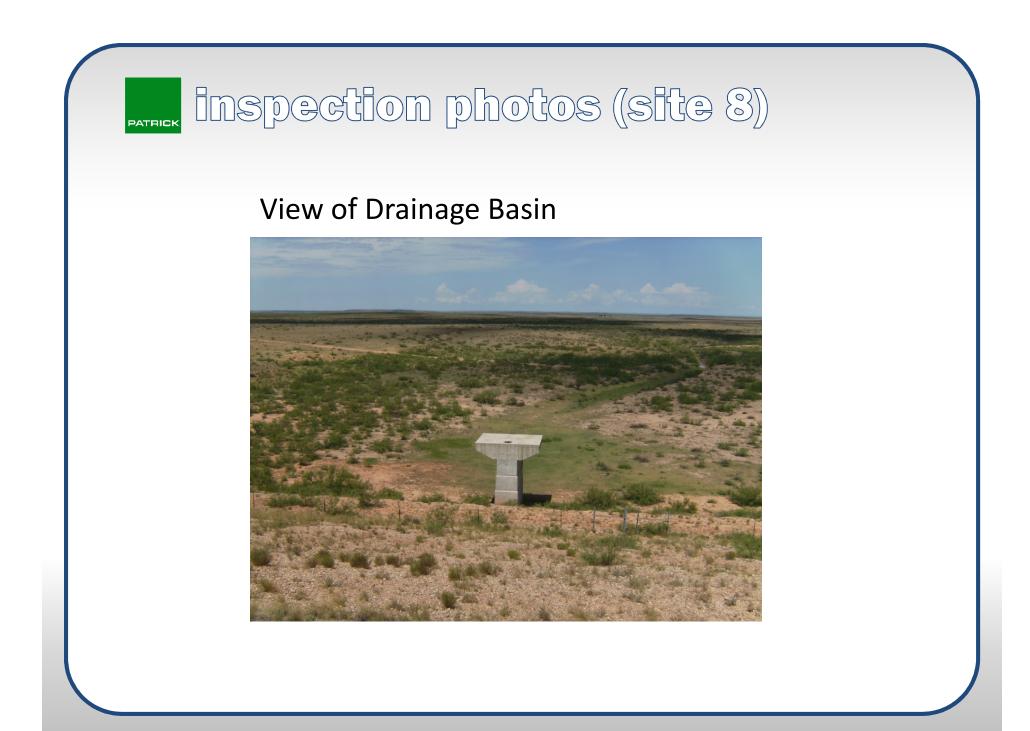
SITE 8 details

61 feet high

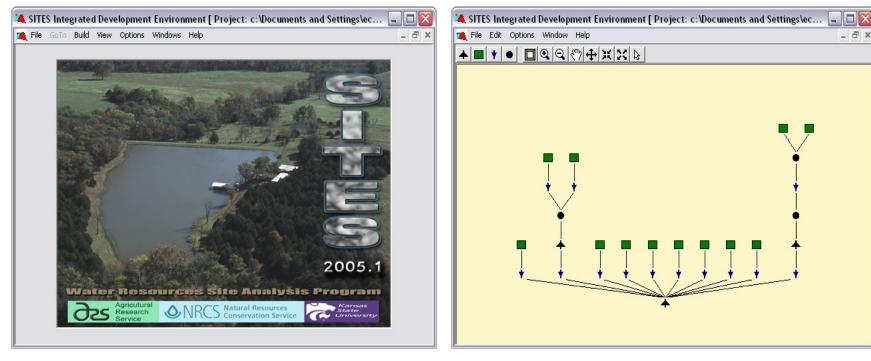
8,800 feet long

Tributary area of 60 square miles

13,700 acre-feet of total storage capacity


54 inch dia. RCP Principal Spillway

PSW Riser (Inlet)



Home Screen

Schematic

Hydrologic Analysis: Four Scenarios

Scenario 1: 100-Year PSW

Principal Spillway (PSW) analysis using 100-yr, 24-hr and 100-yr, 10-day

Scenario 2: 6-hr FBH

Freeboard Hydrograph (FBH) analysis using Probable Maximum Precipitation (PMP)

Scenario 3: 24-hr FBH

Freeboard Hydrograph (FBH) analysis using Probable Maximum Precipitation (PMP)

Scenario 4: 72-hr FBH

Freeboard Hydrograph (FBH) analysis using Probable Maximum Precipitation (PMP)

SITES		
Hydrologic Analysis: Four Sce	narios (Site 6)	
Scenario 1: 100-Year PSW Inflow Peak = 13,462 cfs	Outflow Peak = 333 cfs	Freeboard = -1.49 ft
Scenario 2: 6-hr FBH Inflow Peak = 54,463 cfs	Outflow Peak = 128,198 cfs	Freeboard = -1.72 ft
Scenario 3: 24-hr FBH Inflow Peak = 107,169 cfs	Outflow Peak = 103,058 cfs	Freeboard = -0.22 ft
Scenario 4: 72-hr FBH Inflow Peak = 141,097 cfs	Outflow Peak = 53,319 cfs	Freeboard = +3.03 ft

PATRICK SITES						
Hydrologic Analysis: Four Sce	Hydrologic Analysis: Four Scenarios (Site 8)					
Scenario 1: 100-Year PSW Inflow Peak = 17,306 cfs	Outflow Peak = 759.7 cfs	Freeboard = +1.26 ft				
Scenario 2: 6-hr FBH Inflow Peak = 118,240 cfs	Outflow Peak = 96,352 cfs	Freeboard = -2.71 ft				
Scenario 3: 24-hr FBH Inflow Peak = 98,682 cfs	Outflow Peak = 85,666 cfs	Freeboard = -1.74 ft				
Scenario 4: 72-hr FBH Inflow Peak = 56,441 cfs	Outflow Peak = 35,916 cfs	Freeboard = +2.96 ft				

breach inundation mapping

Dam Breach Hydraulic Modeling: HEC-RAS Unsteady Model

PATRICK

Inundation Area Mapping: HEC-GeoRAS and ArcGIS

Estimate Persons at Risk (PAR):

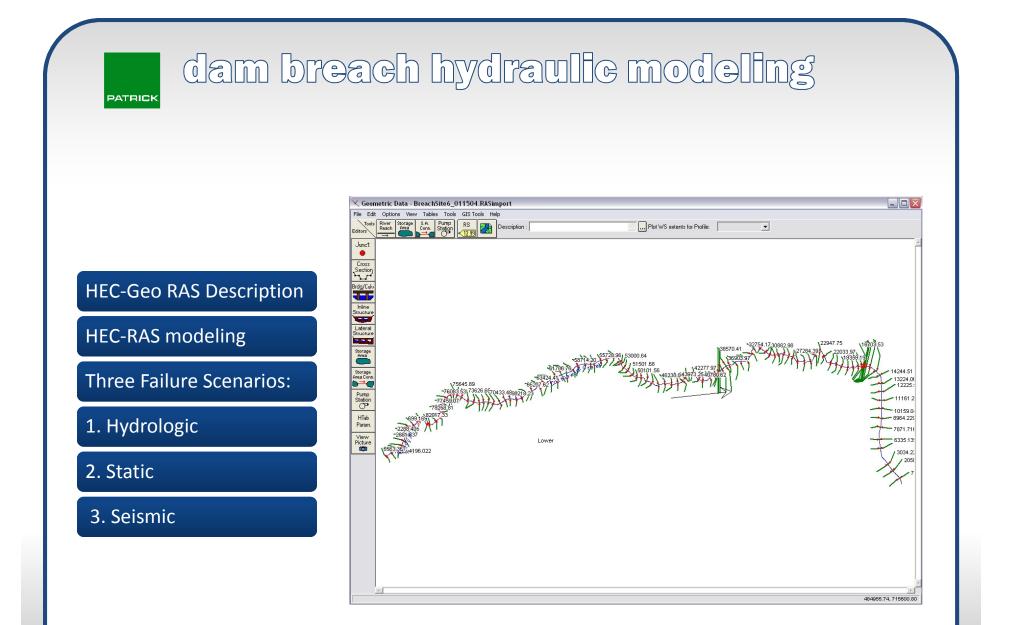
ArcGIS, ArcMap, and US Census data

Cottonwood Site #6 Breach Inundation Map Seismic Failure Scenario Map Index

dam breach hydraulic modeling

Breach wave limits:

• Max depth $\leq 1'$


PATRICK

• Velocity ≤ 1 fps

Anticipate wave will propagate over entire length of model (~ 19 miles) to Pecos River

Breach wave extended to Pecos River FEMA Zone A Floodplain

dam breach hydraulic modeling: theoretical peak breach discharge

Variables

PATRICK

Q_{max} = the peak breach discharge, cfs

 B_r = breach factor, acre

V_s = reservoir storage at the time of failure, acre-ft

 H_{W} = depth of water at the dam at the time of failure, ft

A = cross-sectional area of embankment at the assumed location of breach, ft^2 2. For depth of water at the dam at the time of failure where $\,H_{\rm w} < 103$ ft

$$Q_{max} = (1,100) B_r^{1.35}$$

where
$$B_r = \frac{(V_s)(H_w)}{A}$$

but not less than $Q_{max} = (3.2) H_w^{2.5}$ nor more than $Q_{max} = (65) H_w^{1.85}$

Site 6 Theoretical Peak Breach Discharge = 43,077 cfs

Site 8 Theoretical Peak Breach Discharge = 87,479 cfs

PATRICK

dam breach hydraulic modeling: HEC-RAS unsteady model

Calibration of Dam Breach Parameters:

- Side slope
- Bottom width
- Formation time

Model Stabilization:

- Interpolated Cross Sections
- Initial flow values
- Calculation time period

inundation area mapping

Water surface profile generated from HEC-RAS used to determine inundation limits from digital terrain model using HEC-GeoRAS

Shape file created in GIS to represent inundated area

PAR Estimate: US Census data

PATRICK

PATRICK

evaluation of potential rehabilitation projects

Summary (Consequences) tab Others tabs include:

- Failure & Risk Indexes (loss of life)
- Static Failure Index
- Hydrologic Failure Index
- Seismic Failure Index

-	А	В	С	D	E	F	G	Н	1	J
1				EVALUATIO	ON OF POTENTIAL REHABILITAT	ION				
2	STATE		DAM	Cottonwood-	Walnut Creek Site 6	BY	BS/ADJ		3/10/1	11
3			R BUILT	1986	DESIGN HAZARD CLASS	С	DRAINA	GE AREA	49.44	mi2
4	WORK PLAN DATE				CURRENT HAZARD CLASS		DAM HEIGHT		53	ft
5		sht 1 of 5 CONSEQUENCES OF DAM FAILURE							ver 10010)1
6	POTENT			URE:						
7	Total F	ailure I	ndex						155	Α
8	POTENTIAL LOSS OF LIFE:									
9	Maxim	um Po	pulation-	at-Risk [PAR]				(number)	41	В
10	Total R	isk Ind	ex						44	С
11				PROPERTY:						
12	Identify	major	commun	nity affected b	y breach and rate impact as High ((H), N	Aedium (M)		None(bla	nk)
13			Artesia					(H,M,L,-)	L	D
14					najor buildings			(number)	13	E
				DISRUPTION						
16					lisrupted by dam failure, and estima	ate n				
17			ole sourc				Users	(number)		F
18			tal sourc				Users	(number)		G
19		tion wa		None			Storage	(Ac-Ft)		н
				UCTURE DIS						
21					lentify major crossing rendered unu	isabl				
22		r/Inters		NM 285 & 82	2		Roads	(number)	2	1
23				Co Rd 483			Roads	(number)	1	J
24					N THE ENVIRONMENT:					
25					High (H), Medium (M), Low (L), or I	None	e (blank)			
26	5 1					(H,M,L,-)	L	к		
27	Sensitive riparian areas None				(H,M,L,-)		L			
28	Contaminated reservoir sediment None					(H,M,L,-)		м		
29				habitat	Pecos River			(H,M,L,-)	L	N
30	Othe							(H,M,L,-)		0
31				SOCIAL IMP						
32					High (H), Medium (M), Low (L) or N	lone	(blank)			
33	Known cultural resources None					(H,M,L,-)		Р		
34	Historic preservation issues None					(H,M,L,-)		Q		
35				ed communit				(H,M,L,-)		R
36				ECONOMIC						
37	· ·				o this dam, updated workplan value			(\$)		S
38					; Increase(I), No change(NC), Deci	rease	e(D)	(I,NC,D)		T
39			amilies ir		51101/			(number)	2	U
				SAFETY AG			0.0 11 27			
41						(Y,N)	N	V		
42					High(H), Medium(M), Low(L), None	(blan	ik)	(H,M,L,-)		W
43										
44	Identify	any of	ther cons	iderations an	id rate as High(H), Medium(M), Low	v(L) c	or None(blan			
45								(H,M,L,-)		X
46								(H,M,L,-)		Y

rehabilitation alternatives

Site 6: Six Rehabilitation Options

Option 1: Raise structural auxiliary spillway crest

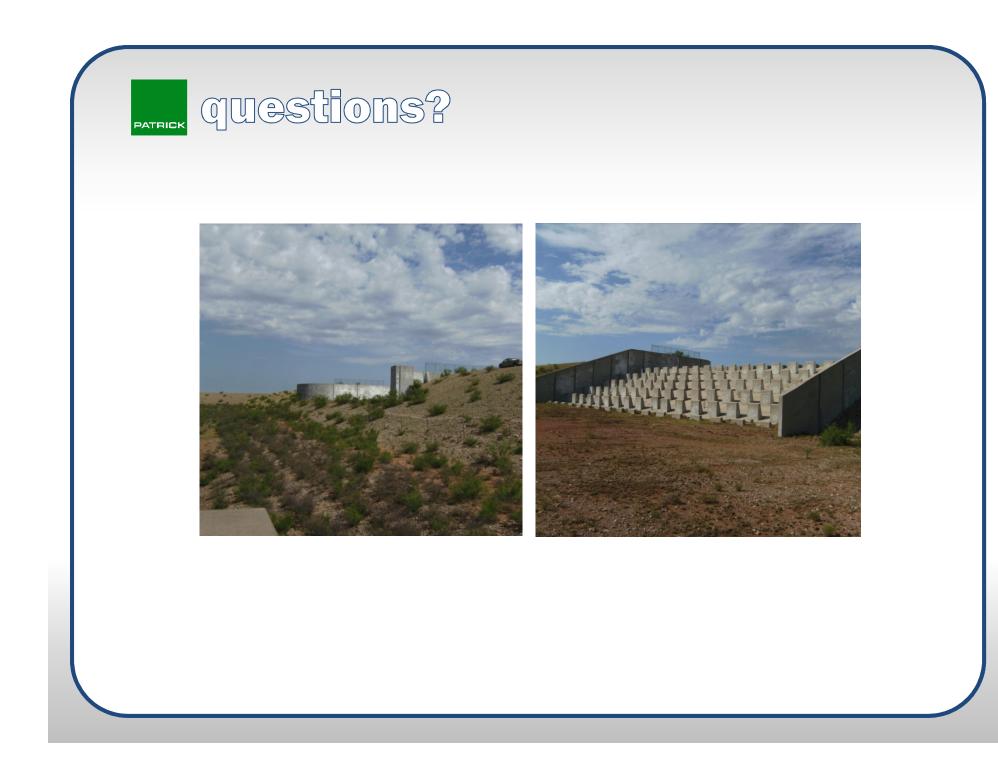
Option 2: Provide additional storage

PATRICK

Option 3: Increase principal spillway capacity

Option 4: Raise the top of dam

Option 5: Lower earthen auxiliary spillway crest


Option 6: Widen structural auxiliary spillway crest

Site 8: Three Rehabilitation Options

Option 1: Raise the top of dam

Option 2: Lower auxiliary spillway crest

Option 3: Widen auxiliary spillway crest

