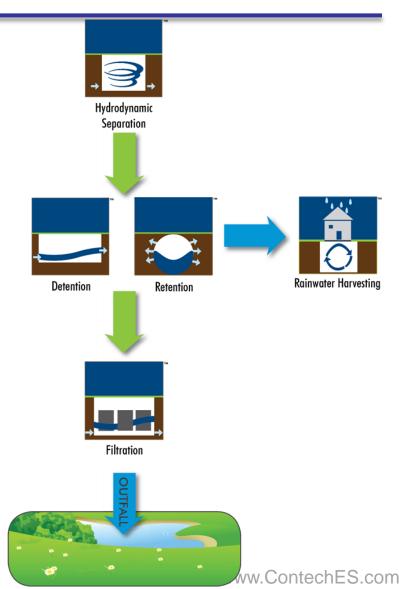


Filtration Fundamentals: The basics and why filtration matters today

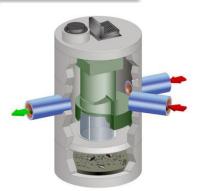
Samantha Brown, PE, Regional Regulatory Manager

Agenda

- Filtration Overview
- Filtration in Stormwater
- Filtration Innovation
- Discussion



Advancing Treatment...


- Trending shift from HDS to Filtration
 - Great Lakes Region
 - \circ Indianapolis suburbs
 - \circ Ohio
 - \circ Wisconsin
- Pollutants of Concern
 - \circ TSS
 - \circ Nutrients
 - \circ Metals

So Many Choices...

	Hydrodynamic Separation	Filtration	
Pollutants of Concern	TSS	TSS, Nutrients, Metals	
Targeted Particle Size	> 50 micron	< 50 micron	
Recognized Testing Protocol	 Lab Testing: NJDEP Field Testing: TARP Tier II 	 Lab Testing: NJDEP Field Testing: TAPE or TARP Tier II 	
Placement Relative to Detention	 Upstream for effective performance 	 Upstream or downstream 	

Typical Applications

- Standalone Treatment
 - New Development
 - o Redevelopment
- LID Pretreatment
 - o Subsurface Infiltration
 - o Rainwater Harvesting
- Polishing Treatment
 - Downstream of Detention

www.ContechES.com

What is filtration?

- The act or process of removing something unwanted from liquid, gas, etc., by using a filter (Merriam Webster Learners Dictionary)
- Inert Media Filtration: A unit process in which suspended solids and associated particulate pollutants are removed by use of a media such as sand or perlite.

• Source: Minton, Stormwater Treatment Second Edition

- Sorptive Media Filtration: A unit process in which dissolved constituents are removed by attachment to a filter media at the molecular level.
 - Source: Minton, Stormwater Treatment Second Edition

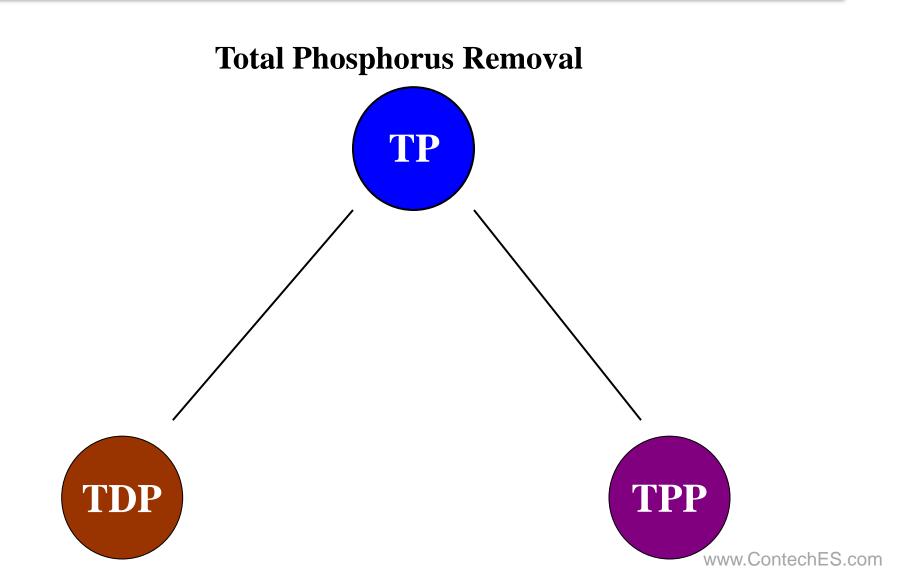
Common Filters

7

Factors Affecting Filter Performance

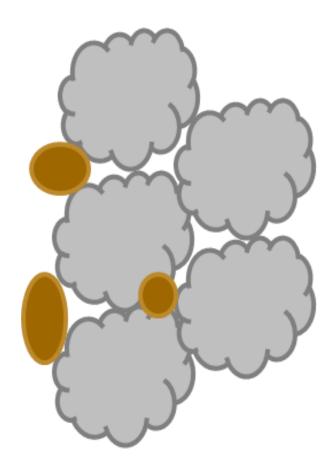
- Media Type

 Active vs Inert
- Media Porosity/Gradation


 Coarse vs Fine
- Media Shape

 Irregular vs symmetrical
- Media Thickness
 Depth vs Surface
- Hydraulic Loading Rate
 Slow vs Fast

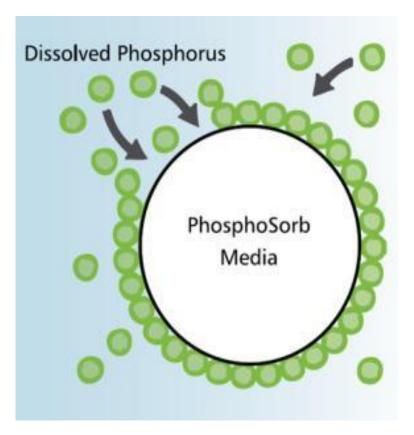
Maximizing Load Reduction



Physical/Inert Media Filtration

Examples: Screening, Media filters, Sand filters, Biofilters, Infiltration

- Inert media is physical barrier to solid particles
- Sedimentation often plays major role in filter effectiveness
- Good control of solids and attached pollutants
- Removal of particulate bound pollutants (i.e. metals and phosphorus)
- No removal of dissolved/soluble pollutants
- Leaching possible
- Longevity must be considered



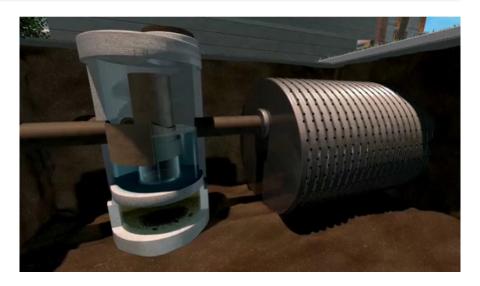
Reactive Filtration

Reactive filtration media with an affinity for target pollutants

- Works in parallel with physical filtration and/or sedimentation
- Target pollutant is bound to media via adsorption, ion exchange etc.
- Effective removal of soluble/dissolved pollutants
- Boosts overall pollutant load reduction
- Prevents leaching

Filter Media Variables

- Range of particle sizes better than uniform size
- Finer media more effective but limits flow
- Irregular shaped particles better than symmetrical
- High surface area improves reactive capacity
- All else equal deeper is better assuming bed filtration



Critical Filter Design Considerations

 Pretreatment common to reduce load on media and extend maintenance cycle

Knock out the coarse stuff

- Media type and gradation
 - Often governed by pollutants of concern and performance goals

Critical Filter Design Considerations

- Hydraulic Loading Rate (gpm/ft² of media surface area)
 - $_{\odot}$ High loading rates result in smaller filters but all else equal need more maintenance
 - $_{\odot}$ Loading rates in stormwater range from 0.05 >10 gpm/ft²
- Longevity
 - Filters must be designed with longevity in mind especially if frequent maintenance is not realistic

• Filtration red flags

- \circ Media toxicity
- o Media variability
- o Media availability
- $_{\odot}$ Lack of field longevity experience

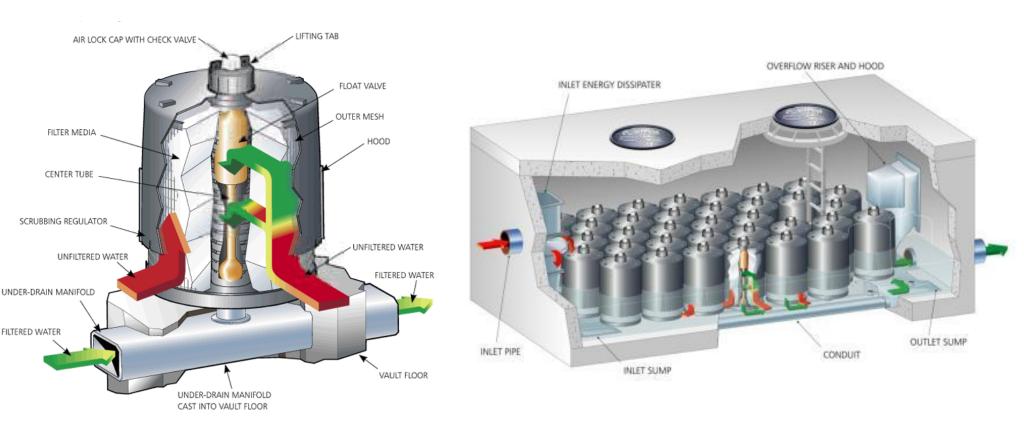
Evolution of Filter Technology

Horizontal Bed Filter

- Low infiltration rates
- Solids accumulate on surface
- Typically sand as media
- Large, land intensive

Horizontal Bed Filter

Radial Flow Filter


- Increased longevity
- Smaller structures
- Easier maintenance
- Custom filter media options

Manhole StormFilter

Innovative Media Filtration

www.ContechES.com

Media Filtration

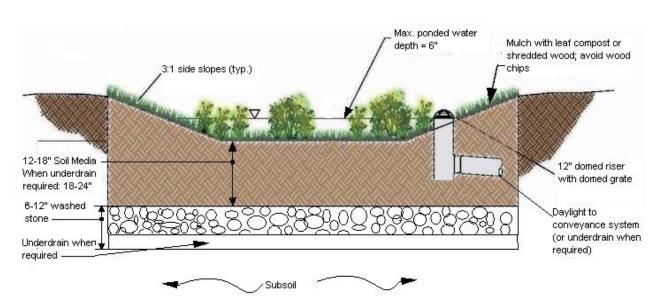
	PhosphoSorb™	Perlite	CSF [®] Leaf Media	ZPG
Sediments				
Phosphorous				
Oil and Grease				
Soluble Metals				•
Organics				
Nutrients				

Innovative Membrane Filtration

Pleated Membrane Filter

Evolution of Filter Technology

Maximum Surface Area in Compact System



Jellyfish Filter

www.ContechES.com

Bioretention/Biofiltration

Source: NYSDEC Chap. 5 NYS Stormwater Management Design Manual

High Performance Biofiltration

- High Flow Media
 - Same principles as traditional biofiltration
 - o 100+ inches/hr flowrate
 - Reduced footprint typically
 1% of tributary drainage area
 - Quality control of media composition

Maintenance

- Longevity, Longevity, Longevity.....
- All filters clog eventually
- Must strike balance between loading rate and longevity
- Ensure maintainability

Verified Performance

- NJDEP Lab Protocol
- TAPE Field Protocol
- WEF STEPP

Questions?

Samantha Brown, PE Regional Regulatory Manager <u>sbrown@conteches.com</u> 859-321-5825