LOWER DES PLAINES RIVER DETAILED WATERSHED STUDY

CALIBRATION AND VERIFICATION USING CLARK'S UNIT HYDROGRAPH METHODOLOGY

Presented by:

Joseph Kratzer, PE - Metropolitan Water Reclamation District Donald R. Dressel, PE, CFM - Christopher B. Burke Engineering, Ltd. Stephanie A. Nurre, PE, CFM - Christopher B. Burke Engineering, Ltd.

MWRDG

PRESENTATION OVERVIEW

- District Detailed Watershed Plan
 - Development and purpose
 - Watershed Planning Council participation
 - Implementation
- Lower Des Plaines River Watershed
 - Detailed Watershed Plan tasks and goals
 - Discussion of Unit hydrograph options and selection
 - Calibration examples
 - Summary

DETAILED WATERSHED PLAN DEVELOPMENT

- Cook County Stormwater Management Plan (CCSMP) adopted by Board of Commissioners in February 2007
- Chapter 6 of the CCSMP provides guidance for Detailed Watershed Plan (DPW) development
- DWPs developed for Poplar Creek, Upper Salt Creek, North Branch Chicago River, Lower Des Plaines River, Calumet Sag, and Little Calumet River Watersheds
- District enlisted Christopher B. Burke Engineering, Ltd. to assist in preparing Lower Des Plaines River DWP
- District led information-gathering effort by requested existing stormwater related background data, studies, and problem area locations from stakeholders

DETAILED WATERSHED PLAN PURPOSE

- Identify the stormwater related problems in the watersheds
 - Flooding
 - Erosion
 - Water quality
- Classify identified problems as Regional, Modeled, or Local
 - Regional :
 - Multi-jurisdictional waterways with at least ½ mi² drainage area
 - Roadways and bridges impacted by overbank flooding of regional waterways at depths exceeding 0.5 feet
 - Erosion along regional waterway posing imminent risk to structures or critical infrastructure
 - Modeled:
 - Structures, roadways, and bridges within inundation area meeting regional problem criteria

NWRDG

• Local:

DETAILED WATERSHED PLAN PURPOSE

- Develop alternative solutions to Regional and Modeled problems
- Evaluate alternative solutions to determine most effective
- Provide report summarizing:
 - stormwater problem areas
 - comprehensive evaluation
 - Listing proposed regional capital improvement projects

DETAILED WATERSHED PLAN PHASES

• Phase A

- Gather existing background information on current watershed conditions and past studies
- Analyze the suitability of existing information
- Phase B
 - Develop hydrologic and unsteady hydraulic models of the watershed
 - Identify potential projects to address stormwater problems
 - Evaluate alternative projects
 - Quantify benefits through economic analysis of property damage from flooding, streambank erosion damage, and transportation damages

WATERSHED PLANNING COUNCIL PARTICIPATION

Watershed Planning Council Workshops

- Workshop #1:
 - Classification of reported problems
 - Draft inundation maps
 - Open space discussion
- Workshop #2:
 - Preliminary alternatives
- Workshop #3:
 - Final alternatives

DETAILED WATERSHED PLANS TO CAPITAL IMPROVEMENT PROJECTS

- Draft watershed plan report reviewed by Watershed Planning Council
- Recommended capital improvement projects reviewed on countywide basis
- Priority for project implementation determined by District's Board of Commissioners
- District will enlist assistance of consultants to develop detailed design documents for project implementation

PRESENTATION OVERVIEW

- District Detailed Watershed Plan
 - Development and purpose
 - Watershed Planning Council participation
 - Implementation
- Lower Des Plaines River Watershed
 - Detailed Watershed Plan tasks and goals
 - Discussion of unit hydrograph options and selection
 - Calibration examples
 - Summary

MWRDGC

• 15 Tributaries +

Mainstem Des Plaines River

- USGS Stream Gages:
 - Tributaries: 6
 - Des Plaines River: 4
- Watershed areas:
 - Varied from 0.26 mi² to 27.0 mi²
 - Salt Creek Watershed = 150 mi²
 - Des Plaines River = 680 mi²

DES PLAINES RIVER WATERSHED

PHASE B BREAKDOWN

- Prepare hydrologic (HEC-HMS) and hydraulic (Unsteady HEC-RAS) models
- Calibrate/verify models using available USGS gage records and surveyed HWM's
- Develop 2-, 5- ,10- ,25- ,50- ,100- , and 500-year flood profiles
- Prepare 100-year storm event flood inundation maps
- Calculate economic damages for structure/property, streambank erosion, and transportation
- Develop alternatives to address Regional and Modeled Problem Areas
- Alternative analysis:
 - determine flood damage reduction benefits
 - develop conceptual cost estimate

• determine Benefit-Cost ratio

THE LOWER DES PLAINES RIVER WATERSHED STUDY

• H&H Modeling Goals:

- Evaluate runoff hydrograph options
- Develop H&H models
- Calibrate/verify gaged watersheds models to September 13-14, 2008 storm event
- Apply adjustment factor to ungaged watersheds

UNIT HYDROGRAPH OPTIONS SCS DIMENSIONLESS UNIT HYDROGRAPH

- SCS Dimensionless Unit Hydrograph
 - Derived from a large number of natural unit hydrographs from agricultural watersheds varying widely in size and geographic location
 - $q_p = K A Q = 484AQ$

 $T_p = 0.5 \triangle D + 0.6 T_c$

Where: q_p= Peak Discharge (cfs)

A = Area (mi²)

- Q = Runoff (inches)
- T_p = Time to Peak (hours)

 $\triangle D$ = Duration of unit excess rainfall

K = Peak Factor Rate (controls shape of unit hydrograph)

(K = 484: standard default for TR-20, HEC-1, and HEC-HMS hydrologic models)

Required parameter: Time of Concentration (T_c)

SENSITIVITY OF SCS TRIANGULAR UNIT HYDROGRAPH TO K

UNIT HYDROGRAPH OPTIONS SCS DIMENSIONLESS UNIT HYDROGRAPH

Example:

- SCS Des Plaines River Floodwater Management Plan 1976
- SCS developed a TR-20 hydrologic model of Willow Creek Watershed
 - Calibrated to USGS Gage (Willow Creek at Orchard Place, discontinued 1979)
- Calibration achieved using K = 218
- Entered into TR-20 using dimensionless unit hydrograph
- If HEC-1, modification of subroutine in source code calculating dimensionless unit hydrograph. Recompile to make new executable HEC-1 file.

UNIT HYDROGRAPH OPTIONS CLARK'S UNIT HYDROGRAPH

• Explicitly represents two critical processes in transformation of excess precipitation to runoff:

Translation:

- Movement of the excess from origin, throughout the drainage area, to watershed outlet
- represented by time-area relationship

Attenuation:

- Reduction of magnitude of discharge as the excess is stored throughout watershed
- represented by linear storage reservoir (allows for accounting of natural storage areas located within watershed)
- Required parameters are Time of Concentration (T_c) and the Storage Coefficient (R)

INITIAL R COEFFICIENT DETERMINATION

A TECHNIQUE FOR ESTIMATING TIME OF CONCENTRATION AND STORAGE COEFFICIENT VALUES FOR ILLINOIS STREAMS

by Julia B. Graf, George Garklavs, and Kevin A. Oberg

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations 82-22

Prepared in cooperation with

ILLINOIS DEPARTMENT OF TRANSPORTATION DIVISION OF WATER RESOURCES

March 1982

- Method to estimate Clark's Unit Hydrograph parameters (T_c and R)
- Regression equations based on results from 98 gaged watersheds in Illinois
- HEC-1 hydrologic models developed and calibrated for each gaged watershed
- Watersheds included both rural and urban conditions
- Study concluded method could be used for rural and urban watersheds
- (TC + R) = 35.2 L^{0.39} S^{-0.78} where:
- L = Stream Length
- S = Slope
- R/(TC+R) = Regional values (LDPR watershed used 0.7)

MWRDGO

BB

INITIAL R COEFFICIENT DETERMINATION

Figure 1.--Regional values of R/(TC + R).

CLARK'S UNIT HYDROGRAPH METHOD APPLICATION TO LDPR WATERSHED

- USGS Regression Equations used to establish T_c and R
- R chosen as calibration parameter
- R multiplier uniformly applied to all subbasins in a sub-watershed (HMS)
- Calibration checked at USGS gage location in Unsteady HEC-RAS
- For the 6 gaged tributaries, R multiplier varied from 1.65 to 3.00
- Relationship between the R multiplier and stream slope was developed for gaged tributaries
- Relationship then used to establish R multiplier for ungaged watersheds

SEPTEMBER 13-14, 2008 STORM EVENT

FLOW (cfs)

3000

FLOW (cfs)

USGS GAGE: WELLER CREEK AT DES PLAINES

SEPTEMBER 13-14, 2008 STORM EVENT

USGS GAGE: WELLER CREEK AT DES PLAINES

3000

SEPTEMBER 13-14, 2008 STORM EVENT

3000

FLOW (cfs)

USGS GAGE: WELLER CREEK AT DES PLAINES

UNIT HYDROGRAPH SELECTION SCS vs. Clark's

- SCS Dimensionless Unit Hydrograph
 - K = 484 does not represent properties of all LDPR watersheds
 - Difficult to modify K value in hydrologic modeling to account for natural storage routing
 - Resultant combined hydrograph peak discharges can be over estimated do to "peak on peak" addition
 - Adjustment of K should be based on natural surface storage rather than watershed slope (T. Suphunvorranop, 1985)
- Clark's Unit Hydrograph
 - Previously applied to several LDPR tributaries
 - Accounts for natural storage routing
 - Accepted process for calculating Runoff Curve Number (CN) and T_c
 - R coefficient could be used as a calibration parameter for gaged watersheds

• Relationship for R vs. stream slope could be applied to ungaged watersheds

BUFFALO CREEK WATERSHED CLARK'S R COMPARISON

STAGE (ft)

BUFFALO CREEK WATERSHED CLARK'S R COMPARISON

OBSERVATIONS

- Clark's Unit Hydrograph calibration
 - R resulting from standard calculation was insufficient
 - R multiplier improved hydrograph shape compared to observed data
 - No need for additional calibration using parameters with accepted calculation methodologies such as of CN or $\rm T_{c}$
 - R multiplier calibration can vary based on:
 - Stream slope
 - Watershed shape
 - Number of modeled storage areas (including ponds, flood control reservoirs, natural storage)
 - Tributaries with higher percent of storage areas modeled required lower R multiplier

MWRDG

ADDISON CREEK WATERSHED

22 MI², 8 FLOOD CONTROL RESERVOIRS APPROXIMATELY 1,800 A-F R x 1.65

FLAGG CREEK WATERSHED

22 MI², 60% OF WATERSHED IN DUPAGE COUNTY LIMITED MODELING OF STORAGE AREAS R x 3.00

CLARK'S UH CALIBRATION ADVANTAGES

• LDPRDWP Advantages:

- Continued use of Clark's Unit Hydrograph per previous studies
- Methodology applicable throughout entire study area
- No need for additional calibration using parameters with uniform calculation methodologies such as of Runoff Curve Number or T_c
- Considers storage factors not explicitly evaluated in H & H modeling efforts
- Use caution when applying strictly to ungaged watersheds and model storage in detail.

MWRD

LOWER DES PLAINES RIVER DETAILED WATERSHED STUDY

CALIBRATION AND VERIFICATION USING CLARK'S UNIT HYDROGRAPH METHODOLOGY

Presented by:

Joseph Kratzer, PE - Metropolitan Water Reclamation District Donald R. Dressel, PE, CFM - Christopher B. Burke Engineering, Ltd. Stephanie A. Nurre, PE, CFM - Christopher B. Burke Engineering, Ltd.

MWRDG

