IAFSM 2011 Annual Conference

Marriot Bloomington-Normal Hotel & Conference Center March 9 & 10, 2011

Is it a Levee or a Dam ? Devils Lake, North Dakota - Update

Stephen L. McCaskie, P.E., G.E., Hanson Professional Services

Devils Lake, North Dakota

- Problem
- History
- Levee vs. Dam
- RAADS / City Embankments
- Hydraulics & Hydrology
- Geology / Hydrogeology
- Subsurface Conditions
- Dam Analyses
- Project Features and Design
- Instrumentation
- Constructability
- Status
- City Embankments

Problem

- Since 1990, flooding destroyed hundreds of homes and businesses, inundated thousands of acres of farmland
- North Dakota and the U.S. government have spent more than \$450 million in flood mitigation

Devils Lake lies within a 3,810-square-mile closed sub-basin of the Red River of the North

Since glaciation, Devils Lake has naturally fluctuated from dry to overflowing through several coulees

Devils Lake has risen 52 feet since 1940 (1400.9 - 10/24/1940; 1452.05 - 6/27/2010)

Devils Lake spills into Stump Lake at 1446 Current level of 1452 lake covers 258 square miles At 1459 combined lakes spill into Sheyenne River through Tolna Coulee

Water Quality Issues Dissolved Solids and Sulfate Concentrations

Water Quality Constraints

Sheyenne River
Sulfate 450 mg/l
Red River of the North
Sulfate 250 mg/l

TDS 500 mg/l

ND State Water Commission

- Designed / constructed Devils Lake West End outlet
- Manitoba lawsuit over 402 Permit denied
- Pumps / pipelines / channels
- Max 250 cfs (permitted) when above 1445.0

History

RAADS - Roads Acting As Dams

- Existing roads "elevated" to act as dams
- Roads not designed / constructed to provide flood protection
- New embankments designed w/ USACE Dam Safety Criteria
- Devils Lake City Embankments
 - Analyzed for flood damage reduction purposes
 - 1987 Initially authorized / constructed as levees (section 205)
 - Raised 1995, 1997, 2004 under PL84-99 using Flood Control and Coastal Emergency Funds
 - Embankments designed w/ USACE Dam Safety Criteria

Levee vs. Dam

- A levee is defined as an embankment whose primary purpose is to provide flood protection from seasonal high water and therefore subject to water loading for periods of only a few days or weeks a year.
- A dam is "an artificial barrier that has the ability to impound water...for the purpose of storage or control of water".
- Dam contains water for prolonged periods, longer than normal flood protection requirements, or permanently.

Levee vs. Dam

Engineering judgment:

- areas of higher elevations where the embankments are small and tie into high ground – <u>levee criteria;</u>
- areas where there is a significant amount of water against the structure all the time dam safety criteria.

RAADS Project

- Portions of ND and BIA roads elevated to "act" as dams
- Many roads within Fort Totten Indian Reservation
- Roads not constructed to function as dams and impound water to protect people and resources from the lake

RAADS Project – Existing Embankments

- Non-engineered
- Multiple raises
- Misc. fill materials
- Pavement / rock
- Non-engineered penetrations
 - Culverts
 - Underground Utilities

FHWA-CFLHD, SLN, BIA, USACE St. Paul District, and ND DOT, proposed safety improvements

- 1999 Task Force possible solutions
 - Dec 2004 recommended technical solutions
- 2005 SAFETEA-LU authorized FHWA to implement recommendations
- USACE interagency group to develop a technical design that will accommodate surface transportation and provide a water barrier
- 2008 Environmental Assessment selected alternatives1A, 2D, 3A and 4B

Section 23 CFR 650.115 (c): Federal Highway Administration (FHWA) design and construction criteria:

Where <u>highway fills</u> are to be <u>used as dams</u> to permanently impound water more than 50 acre-feet (61,710 cubic meters) in volume or 25 feet (7.6 meters) deep, the hydrologic, hydraulic, and structural design of the fill and appurtenant spillways shall have the <u>approval</u> of the State or Federal agency responsible for the safety of dams or like structures within the State, <u>prior</u> to authorization by the Division Administrator <u>to advertise</u> for bids for construction.

Safety of Dams – North Dakota

North Dakota State Water Commission (NDSWC)

FHWA Project ERFO-1(991)

- Phase 1 recommendations for / implementation of emergency repairs to BIA roads and/or embankments (short term)
- Phase 2 analyses and designs for the preparation of plans and specifications for permanent flooding prevention measures
- USACE retained Bergmann-Hanson JV to assist in completion of the Phase 2 analyses and design, and prepare DDRs

Phase 2 Design Recommendations

- Interim raises of 1455 and 1460, and ultimate of 1468 feet.
- Zoned earth dam with
 - compacted core
 - random fill zone
- Seepage control
 - compacted core
 - sand / toe drain
 - slurry cutoff wall

RAADS Project - Selected Alignments

Hydraulics & Hydrology - RAADS

Hydraulics & Hydrology

- USACE Dam Safety Criteria (DSC)
- Five foot freeboard is adopted:
 - Minimum freeboard 5 feet
 - Inflow Design Flood (IDF) ½ PMF (Base Safety Condition) (1,440,000 acre-feet)
 - Maximum wind induced wave runup height 4.4 feet (4+ mile fetch length)
 - Uncertainty of analytical procedures PMP combined with probable maximum snow melt
 - Uncertainty for project function Tolna Coulee, natural outlet at 1459, acts as the spillway for the ultimate lake condition, uncertain performance during a high water event.

Alternative Crest Elevations

- Current elevations (1450-1455)
- Interim raise of 1455 (does not meet DSC)
- Interim raise of 1460 and ultimate raise of 1468 (meets DSC w/ ¹/₂ PMF)

Geology / Hydrogeology

- Glaciated Plains Region of the Central Lowlands Province
- Glaciated Plains Region is between the Missouri Escarpment to the west and the Pembina Escarpment to the east
- Terrain is undulating to rolling hills with many "Prairie Potholes" and shallow lakes
- Uncertain connectivity between Devils Lake and underlying Spiritwood Aquifer
- Gneiss basement rock covered by a thick sedimentary rock (Pierre Shale) covered by glacial deposits

Glacial Deposits

- Quaternary Glacial Aqueous (QGA) overconsolidated silty clays
- Quaternary Old Till (QOT) overconsolidated unsorted sandy, gravelly, silty clay
- Quaternary Young Till/Drift (QYT) sandy, gravelly, silty clay or silty clayey sands
- Quaternary/Holocene Lacustrine (QL) unconsolidated clays, silts, varved clays, and shore deposits of sands and clayey sands (QLA – Marl)
- Quaternary Fill (QF) gravelly, sandy, silty clay, derived from till / drift deposits

Subsurface Conditions

Geotechnical Explorations 2005, 2006, 2007, 2008, 2009, 2010

- Soil Borings (SPT)
- Cone Penetration Test Soundings (CPT)
- Laboratory Testing
- Potential Borrow Site sampling / testing

Design Soil Parameters

- Laboratory Test Data
- Lower bound of the 90% Confidence Level
- Literature review / data bases (USACE / USBR)
- Engineering Judgment

Design Soil Parameters

Embankment Unit or Geologic	unit weight _{sat}	Drained		Undr	ained	Permeability	Consolidation				
Unit	(pcf)	phi(Deg.)	c(psf)	phi(Deg.)	c(psf)	k _h (ft/sec)	eo	Cc	Cr	P _c (psf)	
Compacted Core	130	27	230	0	1000	5.15E-09	-	-	-	-	
Random Fill	125	34	0	0	600	5.15E-09	-	-	-	-	
Sand Drain	133	37	0	37	0	3.00E-04	-	-	-	-	
Granular Fill	120	32	0	32	0	1.00E-06	-	-	-	-	
Seepage Berm	120	34	0	34	0	1.00E-03	-	-	-	-	
Rip Rap	140	32	0	32	0	1.00E-02	-	-	-	-	
Slurry Cutoff Wall	85	0	0	0	0	1.60E-09	-	-	-	-	
QF (Existing Fill - fine grained)	125	34	0	0 14 (CU)	600 560(CU)	5.15E-09	0.679	0.14	0.02	1,840	
QF (Existing Fill - coarse grained)	118	32	0	32	0	1.00E-06	-	1	-	-	
QF (Existing Fill - bad)	120	24	0	0	450	1.00E-09	0.744	0.15	0.02	1,400	
QL (Lacustrine)	120	13	250	0	700	1.00E-09	0.895	0.21	0.05	2,800	
QLA (Recent lacustrine)	112	32	0	0 14.5(CU)	<mark>500</mark> 600(CU)	6.60E-08	1.078	0.27	0.05	2,800	
QLB (Glacio- lacustrine)	110	20	0	0 10.5(CU)	500 520(CU)	2.00E-09	1.067	0.31	0.05	3,500	
QLC (Beach deposit)	120	32	0	32	0	1.00E-06					
QYTA (Young Till)	127	34	0	0 19.5(CU)	1250 1020 (CU)	1.00E-09	0.649	0.13	0.02	2,950	
QYTD (Young Till d)	127	34	0	0	1,000	1.00E-08	0.649	0.13	0.02	2,950	
QO (Outwash Deposits)	127	34	0	34	0	1.00E-06	-	-	-	-	
QGA (Silt)	125	34	0	34	0	1.00E-09				-	
QOT (Old Till)	130	34	0	34	0	1.00E-09	-	-	-	-	

Dam Analyses

1	www
	HAR .
1	IS Army Corps If Engineers®
1	ENGINEERING AND DESIGN

General Design and Construction Considerations for Earth and Rock-Fill Dams

EM 1110-2-2300 30 July 2004

ENGINEER MANUAL

- Seepage Analyses
 - Cracked Section
 - Sand Drain Capacity
 - Sensitivity / Soil Properties
- Slope Stability Analyses
 - End of Construction
 - Short Term Steady State Seepage
 - Long Term Steady State Seepage
 - Staged Construction
- Settlement
 - Overbuild
- Slope Protection
- Filter Criteria
 - (sand drain single vs two stage filter)

Required Factors of Safety

Analysis	Design	Analysis	Embankment	Lake	Minimum FS
Туре	Condition	Condition	Design	Design	
			Elevation	Elevation	
Slope	During	Undrained,	1,455	1,452.0 (2010)	1.5
Stability	Construction	Consolidated /	1,460	1,452.0 (2010)	1.5
	w/ Unwatering	Undrained, and	1,468	1,452.0 (2010)	1.5
		Drained Soil			1.1 (Drained)
		Strengths			
	Short-Term	Undrained Soil	1,455	1,455.0	1.3
	with Steady	Strengths	1,460	1,460.0	1.3
	State Seepage		1,468	1,462.9	1.3
	Long-Term	Drained Soil	1,455	1,455.0	1.5
	with Steady	Strengths	1,460	1,460.0	1.5
	State Seepage		1,468	1,462.9	1.5
Seepage	Short-Term &	Landside Exit	1,455	1,455.0	2.5^{4}
	Long-Term	Y-Gradients	1,460	1,460.0	2.5^{4}
	with Steady		1,468	1,462.9	3.0^{5}
	State Seepage	Landside	1,455	1,455.0	3.0
		Heave	1,460	1,460.0	3.0
			1,468	1,462.9	3.0

Dam Analyses - Example

Section 344+00	Location BIA 4 South #2										
					Se	sepage Resi	Slope Stability Results (Min F.S.)				
Design Condition	Embankment Elevation	Lake Water Surface Elevation	Tailwater Elevation	YGradient	F.S. Y-Gradient	F.S. Landside Heave	Drain Flow (ft ³ /day/ft)	Total Flow (ft ³ /day/ft)	Long-Term Drained Strengths	Consol. Undrained Strengths	Short-Term Undrained Strengths
During Construction (13)	1454.5	1452.0	1433.4 (3)	0.14	7.50	N/A		0.2390	1.30 (9)	1.73 (12)	1.73 (12)
Steady Seepage	1455.0	1455.0	1439.2	0.21	3.33	3.31	0.0050	0.0157	1.91		1.69
Steady Seepage	1460.0	1460.0	1440.3	0.31	3.23	3.30	0.0029	0.0164	2.04		1.63
Steady Seepage	1468.0	1462.9	1440.2	0.22	4.55	5.94	0.0137	0.0139	2.04		1.58
Notes: (3) Bottom of inspect Requires PZ 27 Sheet Pilin	ction trench elevation at 1g.	section analyzed. (9) M	inimum failure surface (depth 5 feet v	/ 50 psf of co	hesion. (12)	Minimum fail	ure surface w	/ 50 psf of co	hesion for Q	C. (13)

Project Features and Design

Embankment dams

- 20 ft top width
- 3.5 to 4H:1V landside slopes
- 4 to 5H:1V lakeside slopes
 Roads acting as dams
- minimum 41 ft top width and 4H:1V side slopes

Project Features and Design

Embankment (new / landside improvement to existing)

- Recommend full 1468 base width
- Compacted Core (w/ inspection trench)
- Random Fill
- Granular Fill
- Slurry Cutoff Wall
- Sand Drain (vertical / horizontal)
- Toe Drain (filter stone w/ perforated / slotted collector pipe) Slope Protection
- Riprap, bedding stone, geotextile fabric Landside Slope Protection / Filter
- Riprap, bedding stone, filter stone, sand drain

Typical Section (1455)

Typical Section (1460)

Typical Section (1468)

Gradation/Material Requirements for New Embankment Construction

Material	Grada	tion Requirements	Other Requirements
Collector Pipe	Maximum P	erforations	-Meets all requirements for
	Slot = 3 mm r	naximum width	perforated, corrugated, P.E. or
	Circular = 4 n	nm maximum dia.	plastic pipe (NDDOT, 2008)
Filter Stone	Sieve Size	Percent Passing	-Meets all requirements for
	1 Inch	100	permeable base aggregate
	3/4 Inch	95-100	(NDDOT, 2008).
	1/2 Inch	85-100	
	3/8 Inch	60-90	
	No. 4	15-25	
	No. 8	2-10	
	No. 200	0-3	
Sand Drain	Sieve Size	Percent Passing	-Meets all requirements for fine
	3/8 Inch	100	aggregate for concrete (NDDOT,
	No. 4	95-100	2008).
	No. 16	45-80	
	No. 50	10-30	
	No. 100	0-10	
	No. 200 0-3	3 (delivered) 0-5 (in place)	
Granular Fill	Sieve Size	Percent Passing	-Granular SW, SP, SW-SM or SP-
	1 Inch	100	SC.
	3/8 Inch	90-100	-Uniformity Coefficient,
	No. 4	80-100	$C_u = \ge 4$
	No. 16	45-100	-Coefficient of Curvature,
	No. 50	10-60	$C_z \ge 1$ to ≤ 3
	No. 100	0-25	
	No. 200	0-12	
Compacted	Sieve Size	Percent Passing	-Cohesive material CL, GC or SC.
Core	3 Inch	100	-Plasticity Index, PI \geq 12 to \leq 30
	No. 200	≥45	$-d_{85} \ge 0.05 \text{ mm}$
Random Fill	Sieve Size	Percent Passing	-Cohesive material.
	No. 200	≥30	-Plasticity Index, PI ≥3to ≤35
			$-d_{85} \ge 0.05 \text{ mm}$

Slope Protection

			Rip	orap G	radation	S				
	Grada	tion 1	Grada	tion 2	Grada	tion 3	Gradat	ion 4	Gradat	ion 5
Thickness (in)	12	2	18		24	24			36	
Thickness (wet ¹) (in)	18		30		36		42		54	
	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min
W ₁₀₀ (lbs)	90	40	200	80	650	260	1500	600	2200	900
W ₅₀ (lbs)	40	20	80	40	280	130	650	300	930	440
W ₁₅ (lbs)	20	5	40	10	130	30	330	100	460	130
	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min
D ₁₀₀ (in)	12	9	16	12	24	17	31	23	35	26
D ₅₀ (in)	9	7	12	9	18	14	24	18	26	21
$D_{15}(in)$	7	5	9	6	14	8	19	13	21	14
(1) For in-the-we	t placeme	nt increas	e thicknes	s by 50 p	ercent.		-			

Bedding Stone Gradations

	Gradation 1		Gradation 2		Grad	ation 3	Grad	ation 4	Gradation 5								
Thickness (in)	6		6			12		12	18								
Thickness (wet ¹) (in)		9		9	18		18		18		18		8 18			30	
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max							
d ₈₅ (in)	1.5	2.9	1.9	3.7	2.8	5.5	3.8	7.5	4.2	8.4							
d ₁₅ (in)	0.5	1.5	0.6	1.9	0.9	2.8	1.4	4.2	1.5	4.6							
(1) For in-the-w	(1) For in-the-wet placement increase thickness by 50 percent.																

Instrumentation

Construction Monitoring

- Settlement Plates
- Inclinometers (slurry cutoff wall, excavation support structures)
- Reference Points (existing embankment)
- Observation wells / piezometers (existing embankment)
 Long Term Performance Monitoring
- Settlement Plates
- Reference Points
- Observation wells / piezometers
- Monitoring / Inspection wells with seepage weirs (toe drain collector / discharge pipe)

Construction Monitoring

Long Term Performance Monitoring

Constructability Issues

- Excavation and removal of landside portion of existing embankments
- Unknown / non-engineered penetrations
- Over excavation of unsuitable foundation soils
- Inspection trench
- Embankment Integrity (seepage control, stability)
- Temporary excavation support / unwatering
- Cofferdam(s)
- Maintenance of traffic

Project Status – Phase 1

- Emergency Repairs to BIA road and embankments (completed 2004)
- Geotechnical Explorations

 soil borings and laboratory testing (completed 2008)

Project Status – Phase 2

Trigger level met for Embankment Raise(s) Dam Safety Criteria

- USACE Guidance for Dam certification
- Reasonable Assurance
 - Freeboard
 - Wave Runup
- Unacceptable Risk
 - 50% chance of WSEL 1452 <2015
 - 2% chance of WSEL 1460 <2015

SLN, BIA, FHWA-CFLHD, USBR, KLJ/IB(AE) – construction plans and specifications
 Construction of cofferdam(s), embankments (8-12 miles)

Proposed Structure Alignments City of Devils Lake, North Dakota 225 0 025 05 075 1 125 Image Data: USDA Farm Service Agency - Summer 2003

Hydraulics & Hydrology – City Embankments

- Landside Improvements
- Slope Protection (riprap/bedding stone)
- Select Impervious Core / Impervious Fill
- Sand Drain

Under Construction

- Phase 1 Embankment (1.4 miles) / Creel Bay Pump Station
- Phase 2A Embankment (0.9 miles)
- In Design / Bidding
 - Phase 2B Embankment (2.5 miles) / East Ditch Pump Station
 - Phase 3 Embankment (X miles) / Lakewood & ND20 Pump Stations

Devils Lake Outlook for Flood Potential...

- 2011
- 1456.3 (10% chance of exceedance)
- 1455.0 (50% chance of exceedance) NWS-FGF 1/27/11
- Current Embankments 1460.0

Devils Lake Outlook for Flood Potential...

Chance of exceeding 1458.0 – spill through Tolna Coulee

- 2012 13% (cumulative) 13% (annual)
- 2015 24% (cumulative) 15% (annual)
- 2020 28% (cumulative) 5% (annual)
- 2030 31% (cumulative) 2% (annual)
 USGS 1/14/11 based on NWS-FGF 12/22/10

Devils Lake Outlook for Flood Potential...

Spill through Tolna Coulee

- Uncontrolled Release (uncertain outcomes)
- Downstream Impacts
 - Flooding (Sheyenne River / Red River Basin)
 - Erosion / Scour (head cutting to 1446)
 - Damage to Water Crossings (infrastructure)
 - Environmental Damage (wetlands)
 - Water Quality/Aquatic Life

North Dakota State Water Commission

DVLK Flood Protection Efforts

- Expand Existing West End Outlet (250 to 350 cfs)
- Construct East End Outlet 2nd outlet (250 cfs)
- Construct Tolna Coulee Control Structure (3,000 cfs)
 - "...the most likely site of an uncontrolled release."

Tolna Coulee Control Structure

- Tolna Coulee Control Structure (alternatives)
 - Facilitate "Controlled" release
 - Eliminate a Possible Catastrophic Failure of Tolna Coulee
 - Maintain structural integrity of the coulee
 - Prevent erosion of the outlet
 - Minimize
 - Flooding (Sheyenne River / Red River Basin)
 - Erosion / Scour
 - Downstream Infrastructure Damage
 - Environmental Damage
 - Impact on Water Quality
 - Impact on Cultural Resources

Tolna Coulee Control Structure

- USACE (PIR) Project Information Report (ongoing)
 - Scour / Schedule / Cost / Economics / Environment
 - Temporary Structure(s) (100% Federal Cost)
 - Permanent Structure(s) (75/25 Cost Share)
 - 1st alternative (Prevent Erosion) Base
 - Grade Control Structure(s)
 - Passive Control
 - Concerns
 - Erosion / Scour (uncontrolled)
 - Schedule (3-years) / Cost
 - Constraints
 - Max. 3,000 cfs
 - Control Elevation 1458 "Pioneer Elevation 1889"

Tolna Coulee Control Structure

- NDSWC Alternative
 - Permanent Structure(s)
 - Grade Control Structure(s)
 - Passive Control (Weirs)
 - Active Control (Gates / Flashboards)
 - Control Elevation: variable 1458 (Pioneer Elevation) to 1446 (Devils Lake to Stump Lake overflow / Jerusalem Outlet)
 - Concerns
 - Erosion / Scour (uncontrolled)
 - Downstream Mitigation Measures
 - Schedule / Cost

Thank You!

