

Bridging the Communication Gap between Structural and Hydraulic Engineers

IAFSM Presentation

Wednesday, March 14, 2018

Why is this important?

- Bridging the Communication gap between two technical disciplines.
 - Best Designs are Iterative
 - Communication throughout Design Process
 - Prevents errors and re-work
 - Achieves a product that is cost-effective

Presentation Setup

"Rounds" of Iterative Phase I Planning

- Round 1: Project Goal
- Round 2: Site Hydraulics
- Round 3: Structural Planning
- Round 4: Capacity
- Round 5: Bridge Condition Report (BCR)
- Round 6: WIT
- Round 7: Scour Analysis | Foundation Design
- Round 8: Submittal Requirements

- Point of Coordination
 - Critical Design Components
- Communication Pitfalls

Round One - Project Goal | Structural Engineer

What's the goal of the project?

- Does the client want to widen the bridge?
- Is the bridge deficient?
- Is there Hydraulic concerns?
- Are there site constraints?

Point of Coordination

 Request from Hydraulic Engineer the design flood elevation based on the Highway Classification.

Round Two - Site Hydraulics | Hydraulic Engineer

- Existing Drainage Report
 - PBDHR, Local Drainage Studies
- Topography
- Regulatory Flood Elevations
 - FEMA maps
 - 100-yr Flood plain delineation
 - Floodway delineation
 - Flood Insurance Studies
 - Flood Profiles
 - Floodway Data Table
 - Summary of Discharges Table

- Flooding Observations
 - High Water (River Stage)
 - Overtopping Events (existing bridges)
 - Peak Streamflow
- Point of Coordination
 - Info Used for General Span Requirements
 - Info Used for Abutment Type and Location

Pitfall – Vertical Datum!

- Site specific survey in NAVD 88
- FEMA Models in NGVD 29
- □ FIS in NAVD 88 or in NGVD 29
- Converting from NGVD 29 to NAVD 88 ranges throughout Illinois from -0.4' to 0.3'

Round Three - Structural Planning | Structural Engineer

- Design Flood Elevation -Is there clearance over the Design Frequency elevation?
 Hydraulic Concerns
 - Planning Structural Options to meet the IDOT low chord requirement

Round Three - Structural Planning | Structural Engineer

Geometry Layout of Substructure

- Hydraulic Skew and NO structural skew
 - Structural Advantages:
 - Smaller bridge spans
 - Smaller Superstructure Depths
 - Lower Construction Cost
 - Hydraulic Disadvantage:
 - Not best solution for the hydraulics
 - Potential increase in scour
 - Potential increase in water surface elevation

Round Three - Structural Planning | Structural Engineer

Geometry Layout of Substructure

- Structural Skew and No Pier Hydraulic Skew (Still Deck Skew)
 - Structural Disadvantage:
 - Longer Spans
 - Deeper Structural Depths
 - Higher Construction Cost
 - Hydraulic Advantages:
 - No Pier Skew
 - Potentially Less Scour

Round Three – Structural Planning | Structural Engineer

- Substructure Types for Hydraulic Engineers
 - High Wall Abutments
 - Advantages
 - Used in tight site constraint areas
 - Allow for shorter spans
 - Disadvantages
 - Expansion Joints
 - Higher substructure element costs
 - Smaller waterway opening

Round Three – Structural Planning| Structural Engineer

- Substructure Types for Hydraulic Engineers
 - Integral Abutments
 - Advantages
 - Increased waterway opening
 - No expansion joints
 - Potential lower scour depths
 - Disadvantages
 - Longer Spans
 - Deeper structural depths
 - Potential higher superstructure construction cost

Point of Coordination Bridge Geometry

Round Four - Capacity | Hydraulic Engineer

Modeling Preliminary Bridge Geometry

- No increase in flood elevations
- Clearance for design storm
- Freeboard for design storm

Point of Coordination

- **D** Feedback on Geometry
 - Slack in span
 - Low Chord/Structural Depth

Pitfall – Not Optimizing Structural Design

- Hydraulic Analysis shows "over" capacity
 - Iterate back through general span and abutment location design (Round 3 and Round 4)
- Ultimately Reducing Span Length is Lower
 Construction Cost and Less Maintenance

Round Four - Capacity | Structural Engineer

Modifications to Superstructure

- Preferred Superstructure Type for Stream Crossings:
 - Precast Prestressed Concrete/ Cast-in-Place (CIP)
 - Advantages: Low Maintenance and generally cheaper than steel
 - Disadvantages: Deeper structural depths
- Alternative to Concrete is Steel
 - Advantages: Shallower Structural depths
 - Disadvantages: Higher long term maintenance, Potentially higher initial construction cost

Round Four - Capacity | Structural Engineer

Modifications to Substructure

- **D** Both Structural and Hydraulic Skew
 - When and Why would you have a structural and hydraulic skew?
 - Balancing span length
 - Minimize Structure depth with the design flood elevation
 - Optimize construction cost

Round Five - BCR | Structural Engineer

Bridge Condition Report (BCR)

- Structural Document
 - Discuss Deficiencies of the Structure
 - Roadway Geometry
 - Hydraulic concerns
 - Concept sketches of (3) alternatives along with associated cost estimates and recommendations

Round Six – WIT | Hydraulic Engineer

Illinois of Tra	s Depa anspor	artment tation					Bridge	Waterway Infe	ormation Table
Route: Waterway: Section: County:					E Pro Pi C	Existing SN:		Date: Date:	-
Drainage Area =	squa	re miles		E: Pro	xisting Overtopp posed Overtopp	ing Elev. = ing Elev. =	at 9 at 9	Sta. Sta.	
	Freg.	Discharge	Waterway	Opening - ft'	Natural	Hea	d - ft	Headwater	Elevation - ft
Flood Event	Yr.	ft ³ /s	Existing	Proposed	H.W.E ft	Existing	Proposed	Existing	Proposed
Design									
Base									
Scour Design Check						100			
Overtop Existing									
Overtop Proposed	3 - 33					3	3		
Max. Calc.	1								

Datum:

All-Time H.W.E. & Date: Surveyed Normal Water Level: ft

ft

10-Year Velocity through Existing Structure = 10-Year Velocity through Proposed Structure =

ft/s ft/s

2-Yr. Flow Rate =

ft³/s

Round Seven – Scour Analysis | Hydraulic Engineer

Bridge scour, the erosion or removal of sediment due to flowing water around piers or abutments.

Round Seven – Foundation Design | Structural Engineer

- Point of coordination with Geotechnical Engineer
 - Provide Design Loads and Geometry
 - Provide Theoretical Scour Depths
 - Scour Type Reductions
 - Limestone 100% reduction in scour depth
 - Shale and Sandstone 90% reduction
 - Stiff to Hard Cohesive soil (Qu>1.5TSF)- 50% reduction
 - Soft to Stiff (0.5 TSF < Qu < 1.5 TSF) 25% reduction</p>
 - Qu < 0.5 TSF 0% reduction</p>

Round Seven – Foundation Design | Structural Engineer

Pile Capacity Table

Illinois Department of Transportation				IDO	T	STATIC METH	OD OF	ESTIMATIN	G PILE LE	ENGTH
SUBSTRUCTURE====================================	vest abut.	2		MAX. REQU	IRE	D BEARING & RESI	STANCE fo	or Selected Pile,	Soil Profile, &	Losses
LRFD or ASD or SEISMIC ====================================	LRFD)		Maximum Nomina	al	Maximum Nominal	Maxim	num Factored	Maximur	n Pile
PILE CUTOFF ELEV. ====================================	446.00	ft		Req'd Bearing of P	ile	Req.d Bearing of <u>Boring</u>	Resistance	Available in Boring	Driveable Leng	th in <u>Boring</u>
GROUND SURFACE ELEV. AGAINST PILE DURING DRIVING ====	444.00	ft		335 KIPS		335 KIPS	1	84 KIPS	60 F	T.
GEOTECHNICAL LOSS TYPE (None, Scour, Liquef., DD) ======	None	2								
BOTTOM ELEV. OF SCOUR, LIQUEF., or DD =================================	424.00	ft			D .1			Drint Dilo Do	sign Table	
TOP ELEV. OF LIQUEF. (so layers above apply DD) ========	434.00	ft			Pfi	nt input Sneet		r init rite De	sign rable	
TOTAL FACTORED SUBSTRUCTURE LOAD	1245	kips			Cle	ear Input Cells		Print Bearl	ng Graph	ſ
TOTAL LENGTH OF SUBSTRUCTURE (along skew)========	34.00	ft						T THIC Double		
NUMBER OF ROWS OF PILES PER SUBSTRUCTURE =======	1									
Approx. Factored Loading Applied per pile at 8 ft. Cts ====		= 292.9	4 KIPS							
Approx. Factored Loading Applied per pile at 3 ft. Cts ====		= 109.8	5 KIPS							
PILE TYPE AND SIZE ====================================	P 10 X 42	2 -								
Plugged Pile Perimeter===================================	3.300	FT.	Unplugged	Pile Perimeter===	===	======= 4.858	FT.			
Plugged Pile End Bearing Area===============	0.680	SQFT.	Unplugged	Pile End Bearing A	rea=	0.086	SQFT.			

Round Eight – Submittal Requirements

Submittal Requirements for BB&S

- Type, Size & Location Drawing
 - General Plan & Elevation of Proposed Bridge
 - Waterway Information Table (W.I.T.)
 - Design Scour Table
 - Substructure Sketch

- Bridge Hydraulic Report
 - Design Scour Depths
- IDOT Form BLR 10210
- Soil Geotechnical Report (SGR)
 - Pile Capacity Sheets

Pitfall – Forgetting about other Disciplines

- Environmental
- Utilities
- Roadway

Coordination "Cheat" Sheet Handout

Hydraulic Structure Coordination Data Sheet

	Tailwater or Backwater on Structure:
	History of Flooding or Overtopping problems:
Project:	-
Project No:	Sources and Dates of Observed Highwater:
Hydraulic Engineer Contact:	Sensitive Flood Recentors locat
Structural Engineer Contact:	
Geotechnical Engineer Contact:	
Project Scope/Goal:	
Complete Replacement	clearance:
Superstructure Replacement Undering: Length of pigs and	ESINF
O Bridge	Teliminary Proposed Structure Information
Culvert	Low Reputient
Newski	Low Beam Elevation.
	Tatal Longth from face to face abuttment:
THE TYPE TWO	Abutment trace
Lestary Floodway: DYES DNO	Skew (stractural):
Drainage Area to Structure (sq. mi.):	- Skew (hydraulic):
	Number of Spans:
Minor Arterial	
Urban Collector Drincipal Attorial Local	Culvert: VES NO
	Type and Size:
Design Flood Frequency: 30-year 50-year Other:	US Invert elevation:
Design Storm WSEL and Datum:	DS Invert elevation:
Datum of FIS Profile:	- Length:
Datum of FIS Model:	Entrance Type:
Boundary Condition Location and Elevation(s):	- Wing walls:

Engineering Resource Associates, Inc.

Jenny Loewenstein, P.E., CFM, CPESC 14-years Experience <u>iloewenstein@eraconsultants.com</u> 630.393.3060

Melissa Lange, S.E., P.E. 20-Years experience <u>mlange@eraconsultants.com</u> 630.393.3060