

City of Rockford Keith Creek Greenway Flood Mitigation Project

Introduction – Problem Overview

- 1890's Building of homes along Keith Creek
- 1920's Home construction nears completion
- 1926 Flood devastates new homes
- 1938 Flood again causes damage to homes
- 1939 WPA program assist with channel project
- 1941 Flood Control Dam built on North Branch
- 1941 Flood Control Dam not built on South Branch
- 1952 Flood of Record causes damages to homes
- 2006 & 2007 Floods continue to harm homes

Introduction – City Buyout Program

- 2008 Acquisition of flood damaged homes begins
- Goal established to remove the highest damaged and most at risk homes (approx 128 homes)
- Homeowners offered pre-flood fair market value
- Acquisition program follows the Uniform Relocation Act guidelines and uses certified appraisal firms

Introduction – Solution Options

- Recognize there is not one measure will solve this long-term flooding problem
- Home buy-out first phase toward a long term solution
- Channel work needed to help flooding, water quality, and sustainable neighborhood design
- Construct a small flood control dam on the south branch of the creek
- Community buy-in to the vision of the approach

Rockford - Background

65 square mile area

80,000 parkway trees

14 watersheds

365 detention basins

dams: Alpine,
Page Park,
Levings Lake

123 bridges

Keith Creek – Background Cont...

Keith Creek - In the 1930's....

Keith Creek – Background Cont...

Keith Creek - Now....

Keith Creek – Background Cont...

- Watershed Characteristics:
 - Approximately 18 miles of Channel
 - Main channel is regulated by Alpine Dam

- FEMA Effective Hydraulic Model
 - HEC-2 Hydraulic Model
 - Developed in the late 1970's

USACE and City of Rockford Coordination

- Performed Detailed Survey
 - 55 Bridge and Culverts
 - Over 240 Cross-Sections
- Developed HEC-HMS model
- Created Steady-State HEC- RAS Model
 - Modeled 8 miles of Channel

- Conversion from Steady State to Unsteady
 - Increase level of detail in hydrologic model
 - Combine Main Channel with South Branch
 - Added more cross sections in project area
 - Included Alpine Dam in hydraulic model
- Allowed investigation of...
 - Effects of projects on overbank storage
 - Timing of flows from South Branch

Modeling Results – 100 Year Flowrates

Location	FIS Flows (cfs)	MWH Flows (cfs)
To Alpine Dam	900	1,447
Rock River Confluence	1,144	2,746

Modeling Results – Flood Elevations

Location	FIS WSEL (ft)	MWH WSEL (ft)
South Branch Confluence	745.0	745.9
Churchill Park	730.9	731.7
8 th Street	726.0	725.9
Rock River Confluence	703.2	703.4

Charles Street Overflow

- 800 feet of Diversion Channel
- 1,000 feet of Stream Channel Widening and Restoration
 - Extending from 18th to Charles Street
- Flood Level Reduction = 3 feet

- Churchill Park Restoration Plan
 - Restoration and Stabilization of Eroding Banks
 - Removal of existing concrete-line channel
 - Lowering and re-meandering of channel
 - Establishment of native vegetation

- Churchill Park Restoration Plan Cont...
 - Increase Conveyance
 - -Modifications to several restrictive bridge crossings
 - Increase Flood Storage
 - Excavation in Overbank Areas

Maximum Flood Reduction = 3 Feet

- South Branch Flood Control Project
 - Eliminate Street Flooding
 - Earthen Embankment Dam

Funding - Opportunities

- Traditional Disaster Grant Programs
- Non-Traditional Federal/State Programs
- Sales Tax for Infrastructure
- Public-Private Partnerships
- Long-Term Bonding
- New Utility Tax

Funding – Road Blocks

- Traditional Grant funding timeline challenges
- Community Buy-in challenges
- Size of Project Needs (\$30 Mil)
- Federal Interest Process
- State of Illinois funding challenges

Funding – Lessons Learned

- Recognize that everyone's priorities change very quickly
- Don't be bashful about developing your project, but recognize that you need to build flexibility into the financial strategy very soon
- NIMBY can be an obstacle and a benefit
- Projects that change a Neighborhood dynamic are political, financial, and culturally challenging. In our case the challenge dates back to the 1930's

Where are we now?

- 112 homes have been acquired and are awaiting funding for their deconstruction
- Buy-in by our citizens help to make this project sustainable throughout all phases
- Development of a multi-phase approach to mitigate future flood loss
- Continue to meet with stakeholders to complete the different phases of this project

Moving Forward

- Remove physical and non-physical obstructions to this project
- Create a safe walkable neighborhood
- Establish an environmentally enhanced riparian stream corridor near the confluence with our river
- Improve connectivity with existing neighborhood destinations through pathway and roadway improvements
- Promote the efforts of this project throughout the state and region