Developing an Effective EPA 319 Watershed-Based Plan

Mark Willobee, CPESC
Matt Bardol, P.E., CFM, CPESC, D.WRE
Benefits of Planning at Watershed Level

- Address water quality issues and natural resource management and protection across jurisdictional boundaries
- Pool resources and efforts of watershed stakeholders
- Increase likelihood of receiving grant funding
 - CWA Section 319
 - Illinois Green Infrastructure Grant
1. Identification of causes of impairment and pollutant sources
2. Estimate load reductions expected from management measures
3. Describe nonpoint source (NPS) management measures needed to be implemented to achieve load reductions
4. Estimate technical and financial assistance needed, associated costs, and/or the sources and authorities that will be relied upon to implement the plan
5. Information and education component used to enhance public understanding of the project
6. Schedule for implementing the NPS management measures identified in the plan
7. Describe interim measurable milestones to determine whether NPS management measures are being implemented
8. Set of criteria that can be used to determine whether loading reductions are being achieved over time
9. Monitoring component to evaluate the effectiveness of the implementation efforts over time
Overarching Considerations

• Plan should:
 • Describe tangible, realistic actions capable of being implemented
 • Have stakeholder buy-in
 • Be written to reach a wide audience
 • Be based on an adaptive management approach

Why Watershed Plans Fail
The Center for Watershed Protection conducted a broad assessment of the value of planning documents in protecting water resources and identified a number of reasons why some plans had failed:
 • Planning activities were conducted at too great a scale.
 • The plan was a one-time study rather than a long-term management process.
 • Stakeholder involvement and local ownership were lacking.
 • The plan skirted land use/management issues in the watershed.
 • The document was too long or complex.
 • The recommendations were too general.
 • The plan failed to identify and address conflicts.

• Stakeholder group should include:
 • Representatives of various interests within watershed—citizens, municipalities, environmental groups
 • Critical decision-makers
• Meeting should be held at times that allow stakeholder attendance
 • Evening meetings for citizens
 • Day meetings for municipal staff, other professionals, etc.
• Potential causes of impairment and sources of pollutants from IEPA 305(b) and 303(d) List
• Collect and analysis existing watershed characteristics
 • Land use, topography, soils, wetlands, etc.
• Physical, chemical and biological data
 • IEPA, IDNR, municipal data, etc.
• Data compiled in one comprehensive database
 • Total Number of Sites: 51 (40 w/water quality data)
 • Total Entries: 26,166
 • Period of Record: 1967-2008
 • Samples per Site: 1 to 268
 • Number of Parameter Codes: 340
• Processed (“cleaned up”) to allow for analysis
• Data were geo-referenced

Note: The Hickory Creek Watershed Plan, currently in draft form, was prepared using U.S. Environmental Protection Agency funds under Section 604(b) of the Clean Water Act, as authorized under the American Recovery and Reinvestment Act of 2009, distributed through the Illinois Environmental Protection Agency. The plan was prepared for the Hickory Creek Watershed Planning Group with overall project oversight by the Chicago Metropolitan Agency for Planning.
Data Analysis Examples
Table A-1. Chloride Statistics for the Hickory Creek Watershed

<table>
<thead>
<tr>
<th>Segment ID</th>
<th>Water Body</th>
<th>Begin Date</th>
<th>End Date</th>
<th>Count</th>
<th>Maximum (mg/L)</th>
<th>Average (mg/L)</th>
<th>Geomean (mg/L)</th>
<th>Median (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL_GG-04</td>
<td>Hickory Creek</td>
<td>3/7/1968</td>
<td>9/17/2003</td>
<td>125</td>
<td>786</td>
<td>159</td>
<td>117</td>
<td>127</td>
</tr>
<tr>
<td>IL_GG-06</td>
<td>Hickory Creek</td>
<td>3/7/1968</td>
<td>9/17/2003</td>
<td>31</td>
<td>720</td>
<td>178</td>
<td>124</td>
<td>115</td>
</tr>
<tr>
<td>IL_GG-22</td>
<td>Hickory Creek</td>
<td>12/5/1967</td>
<td>12/28/2005</td>
<td>290</td>
<td>833</td>
<td>145</td>
<td>119</td>
<td>130</td>
</tr>
<tr>
<td>IL_GGA-02</td>
<td>Spring Creek</td>
<td>6/14/1972</td>
<td>7/17/2006</td>
<td>22</td>
<td>170</td>
<td>69</td>
<td>53</td>
<td>45</td>
</tr>
<tr>
<td>IL_GGB-01</td>
<td>Marley Creek</td>
<td>3/7/1968</td>
<td>11/1/1976</td>
<td>27</td>
<td>240</td>
<td>81</td>
<td>68</td>
<td>57</td>
</tr>
<tr>
<td>IL_GGC_FN_C1</td>
<td>Union Ditch</td>
<td>7/24/2003</td>
<td>9/17/2003</td>
<td>6</td>
<td>918</td>
<td>476</td>
<td>525</td>
<td>509</td>
</tr>
<tr>
<td>Trib. to IL_GGB-01</td>
<td>Trib. to Marley Creek</td>
<td>9/6/2008</td>
<td>9/6/2008</td>
<td>3</td>
<td>110</td>
<td>110</td>
<td>110</td>
<td>110</td>
</tr>
</tbody>
</table>

Note: Chloride has a 305(b) criterion of 500 mg/L. Table values in excess of this criterion are denoted by bold font and cells highlighted in gray; however, this does not necessarily denote a water quality standards violation.
Various approaches available
 • Choice is often data and budget driven
• Identify sources of pollutants

<table>
<thead>
<tr>
<th>Model</th>
<th>Complexity</th>
<th>Application</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSPF</td>
<td></td>
<td>Agriculture & Urban (~hourly)</td>
<td>Management Scenario Generation</td>
</tr>
<tr>
<td>SWMM</td>
<td></td>
<td>Urban (~hourly)</td>
<td></td>
</tr>
<tr>
<td>SWAT</td>
<td></td>
<td>Agriculture (~daily)</td>
<td>Critical Source ID</td>
</tr>
<tr>
<td>GWLF</td>
<td></td>
<td>Mostly Rural (~monthly)</td>
<td></td>
</tr>
<tr>
<td>Load Duration Curves</td>
<td></td>
<td>Agriculture & Urban (relative contribution)</td>
<td></td>
</tr>
<tr>
<td>Spreadsheet Tools (STEPL)</td>
<td></td>
<td>Agriculture & Urban (relative contribution)</td>
<td>Diagnostic Only</td>
</tr>
</tbody>
</table>
• Two approaches employed:
 • USEPA’s Spreadsheet Tool to Estimate Pollutant Loads (STEPL)—relative contributions of pollutant loads by land use
 • Load Duration Curves—load estimates by flow regime; also allow for analysis needed load reductions based on selected appropriate water quality criterion
Table 2-9. Non-Point Source Pollutant Load Estimates

<table>
<thead>
<tr>
<th>Sources</th>
<th>Nitrogen Load (lb/yr)</th>
<th>Phosphorus Load (lb/yr)</th>
<th>Sediment Load (t/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>229,358</td>
<td>28,528</td>
<td>8,586</td>
</tr>
<tr>
<td>Cropland</td>
<td>336,032</td>
<td>45,035</td>
<td>10,206</td>
</tr>
<tr>
<td>Pastureland</td>
<td>1,122</td>
<td>127</td>
<td>22</td>
</tr>
<tr>
<td>Forest</td>
<td>4,285</td>
<td>1,968</td>
<td>121</td>
</tr>
<tr>
<td>Septic</td>
<td>22,124</td>
<td>8,665</td>
<td>--</td>
</tr>
<tr>
<td>Total</td>
<td>592,922</td>
<td>84,322</td>
<td>18,934</td>
</tr>
</tbody>
</table>

Existing Conditions Nonpoint Source Nitrogen Load Estimates
- NUC 14 Subwatershed Boundary
- Stream
- Existing Nitrogen Load (lb/acre/yr)
 - 1.99 - 4.47
 - 4.48 - 7.46
 - 7.47 - 9.41
 - 9.42 - 12.18
 - 12.19 - 15.02
- 0.55 - 1 Mile

www.geosyntec.com
Load Analysis Summary

<table>
<thead>
<tr>
<th>Flow Condition</th>
<th>Existing Load* (tons/year)</th>
<th>Allowable Load* (tons/year)</th>
<th>Required Reduction (tons/year)</th>
<th>(% Existing Load)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>11,302</td>
<td>4,621</td>
<td>6,681</td>
<td>59%</td>
</tr>
<tr>
<td>Moist</td>
<td>1,889</td>
<td>3,423</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Mid</td>
<td>362</td>
<td>936</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Dry</td>
<td>177</td>
<td>685</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Low</td>
<td>35</td>
<td>112</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Total</td>
<td>13,766</td>
<td>9,777</td>
<td>6,681</td>
<td>49%</td>
</tr>
</tbody>
</table>

*Loadings given in tons/year are weighted according to frequency of occurrence.

Figure B-10: Total Suspended Solids LDC Developed Using the Illinois 305(b) Water Quality Criterion of 116 mg/L and the 85th Percentile of Existing Data.
• Analysis of future watershed condition is critical for identification of control measures to protect and restore watershed in long term
• Future watershed condition approximated based on comprehensive plans, zoning maps, population projections, etc.
• Associated pollutant load estimates developed to identify potential relative contributions of different pollutant sources
• Specific Project Recommendations
 • Stormwater management retrofits, stream channel protection and restoration, agriculture BMPs, etc.
 • Identify implementers, cost estimates, technical assistance needed and potential funding sources

• Non-Structural NPS Management Measures
 • Plans—e.g., municipal comprehensive plan updates
 • Policies—e.g., ordinance revisions and additions
 • Programs—e.g., education and outreach opportunities
• Watershed Reconnaissance
 • Allows for on-the-ground understanding of the existing watershed conditions
 • Evaluation of potential problem areas (i.e. streambank erosion, channel modifications, etc.)
 • Assessment of existing stormwater management approaches
 • Identification and evaluation of site-specific project recommendations
• Three-pronged strategic reconnaissance
 • Upper watershed area assessment based on a modified version of the Center for Watershed’s (CWP) Unified Subwatershed and Site Reconnaissance methodology
 • Evaluation physical stream characteristics (e.g., sediment deposition, channel sinuosity, etc.)
 • Potential problem area identification based on modified version of the CWP’s Unified Stream Assessment methodology
Example Project Recommendations

Bioretention Retrofit

Streambank Stabilization
• Comprehensive plans reviewed for opportunities to improve water quality and natural resources protection across municipal boundaries

• Ordinances reviewed against 70-question checklist developed from various sources (e.g., USEPA Water Quality Scorecard)

• Numerous programmatic recommendations—education and outreach, chloride reduction program, etc.
• Schedule should establish clear implementation actions
 • Stakeholder driven
 • Short-term—e.g., first five years
 • Long-term, on-going actions
• Milestones should be based on tangible, doable actions
 • Establish sense of achievement and accountability
• Establish monitoring program to allow for:
 • Evaluation of effectiveness of the implementation efforts over time
 • Watershed decision-makers to determine long-term trends and to improve characterization of different sources of pollutants in the watershed
• Watershed plans need to be living documents
• Improved decision-making based on additional monitoring and analysis efforts
• Provides flexibility in plan implementation
• Established formalized group of stakeholders
 • Continuity of stakeholders
 • Continued momentum for plan implementation
Mark Willobee and Matt Bardol
Geosyntec Consultants
1420 Kensington Road, Suite 103
Oak Brook, Illinois

mwillobee@geosyntec.com
mbardol@geosyntec.com
630-203-3340