

DUPAGECOUNTY

STORMWATER MANAGEMENT

Automation of HSPF Procedures for Event Selection and Model Calibration

IAFSM Conference 2022 – March 8th, 2022

Jack T. Knuepfer Administration Building, 421 N. County Farm Rd., Wheaton, IL 60187

Love Blue, Live Green.

unty Stormwat

(630) 407-6700 • www.dupageco.org/swm

- 1. County Overview
- 2. History of the Department
- 3. Watershed Characteristics
- 4. Hydraulic & Hydrologic Methodology
- 5. Hydrology Procedures
- 6. Automation

Presentation Overview

DuPage County, Illinois

Love Blue. Live Green.

Watershed Characteristics

- Urbanized
- Very flat, numerous flow paths
- Backwater effects
- Flood control facilities pump & gate operations
- Offline storage

Hydrology

Hydrological Simulation Program - FORTRAN (HSPF)

- Continuous simulation
- Land cover types (eg. Impervious, grass, forest, agriculture)
- Recalibrated approximately every 10 years

Rain & Stream Gage Network

- Used to drive the hydrology model
- NOAA Gages: Wheaton, O'Hare, Elgin, Aurora, Argonne
 - * Continuous rainfall record since 1949
 - * Thiessen Polygons
- 28 additional rain gages
- 12 streamflow gages

DuPage County Methodology

Hydraulics

Full Equations (FEQ)

- 1-D, Unsteady flow
- Historical storm data 157 Events
- Regulatory model

(Credit: Lake County Stormwater Management Commission)

DuPage County Methodology

Hydrology Procedures

- Continuous simulation vs design storm
- Data collection & Processing
- HSPF modeling
- Calibration

*Event selection

*FEQ modeling

Adapted from AquaTerra

Hydrology Procedures

- Continuous simulation vs design storm
- Data collection & Processing
- HSPF modeling
- Calibration

*Event selection

*FEQ modeling

Design Storm

> ectinc.com

Hydrology Procedures

- Continuous simulation vs design storm
- Data collection & Processing
- HSPF modeling
- Calibration

*Event selection

*FEQ modeling

Love Blue. Live Green.

Hydrology Procedures

- Continuous simulation vs design storm
- Data collection & Processing
- HSPF modeling
- Calibration
 - *Event selection
 - *FEQ modeling

Data Collection & Processing

- NOAA precipitation
- USGS precipitation
- Argonne meteorology
- Wastewater facility discharge
- USGS Streamflow
- Precipitation Disaggregation

Data Collection & Processing

USGS Streamflow	agen 5s USGS USGS USGS USGS	cy_cd 15s 1 0 0 0	i s 16d 1)5540)5540)5540)5540	ite_no 4n 10s 091 091 091 091	date 1991 1991 1991 1991	time -10-01 -10-02 -10-03 -10-04	02_ 8.8 10 15 28	00006 Ae Ae Ae Ae Ae	0000)3 ()	2_0006	0000	03_0	cd							
Argonne Meteorologic Data	1 4 2 1 4 2	20 0030 20 0130 20 0230 20 0330 20 0430 20 0430 20 0630 20 0630 20 0730 20 0830	0 E 0 F 0 E 0 F 0 F 0 F 0 D 0 C 0 C	3.4 350.4 344.2 348.5 356.9 11.4 9.0 9.0 5.1	3.9 3.6 3.2 3.6 3.1 2.9 2.6 2.9	11.1 11.5 9.3 10.4 9.3 9.6 11.4 18.8 15.6	2. 2. 2. 2. 2. 2. 2. 3.	3 3 1 3 1 3 1 3 1 2 4 9 6	7.4 47.3 46.3 50.2 4.7 18.2 15.8 11.7 11.3	2.4 2.4 2.2 2.1 2.0 2.1 2.4 2.6	20.0 20.0 19.1 18.2 19.0 21.0 20.0 23.1 20.0	2 2 2 2 3 2 3 2 3 4	.5 .5 .2 .2 .3 .7 .3 .0	0.8 0.7 0.5 0.5 0.5 0.7 1.1 1.4	86.4 86.3 86.5 86.4 86.3 85.9 85.1 83.2 81.2 75 0	-0.4 -0.4 -0.4 -0.3 -0.3 -0.5 -0.8 -0.9	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.00 0.00 0.00 3.00 38.60 109.10 197.50	-11.00 -12.60 -13.60 -13.70 -13.70 -10.50 15.90 64.30 124.10	99. 99. 99. 99. 99. 99. 99.	44 42 44 46 48 53 60 68
NOAA Daily Precipitation	DSET C 3210 1 3210 1 3210 1 3210 1 3210 1 3210 1 3210 1 3210 1 3210 1 3210 1 3210 1	OOPID 11549 11549 11549 11549 11549 11549 11549 11549	WBNID 94846 94846 94846 94846 94846 94846 94846 94846	STATION CHICAGO CHICAGO CHICAGO CHICAGO CHICAGO CHICAGO	NAME OHARE OHARE OHARE OHARE OHARE OHARE	INTL AF INTL AF INTL AF INTL AF INTL AF INTL AF	2 2 2 2 2 2 2	CI 02 02 02 02 02 02 02 02	PRCP	UN YEA HI 200 HI 200 HI 200 HI 200 HI 200 HI 200 HI 200 HI 200	RMO DAH 001 012 002 012 003 012 004 012 005 012 006 012 007 012	R DAY(4 000(4 000(4 000(4 000(4 000) 4 000(4 000(4 000)	01 F 00 T 00 05 00 T 16 36 00	F DAHR 0 0224 S 0224 0 0224 0 0224 S 0224 S 0224 S 0224 0 0224 O 0224	DAY02 00001 00000 00000 00000 00000 00001 00146	F F DAHR 0 0324 T 0 0324 T 0 0324 T 0 0324 T 0 0324 0 0324 0 0324 0 0324 0 0324 0 0324	DAY03 00025 00000 00000 00000 00000 00000 00000 0000	F F DAHR 0 0424 T 0 0424 0 0424 0 0424 T 0 0424 0 0424 S 0424 S 0424	DAY04 F I 00000 T (00000 T (00000 T (00000 T (00000 T (00000 T (DAHR 0 0524 0 0524 0 0524 0 0524 0 0524 0 0524 0 0524 0 0524 0 0524	0 0 0 0 0 0
USGS Hourly Precipitation	Preci Preci Preci Preci Preci	ip 1 ip 1 ip 2 ip 2 ip 2	9999 9999 2000 2000 2000	12 31 12 31 01 01 01 01 01 02	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 1.0	0.0	0 0. 0 0. 0 0. 0 0.	0 0 0 0 0 0 0 0 0 0	.0 0 .0 0 .0 0 .0 0	.0	0.0 0.0 0.0 1.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0			

Precipitation Disaggregation

322	10/14/2014 12:00			0.01	0.00	0.18	0.18	0.01	
323	10/14/2014 13:00			0.30	0.00	0.05	0.05	0.31	
324	10/14/2014 14:00			0.00	0.01	0.00	0.00	0.00	
325	10/14/2014 15:00			0.24	0.00	0.00	0.00	0.25	
326	10/14/2014 16:00			0.23	0.40	0.09	0.09	0.24	
327	10/14/2014 17:00			0.04	0.32	0.45	0.26	0.04	
328	10/14/2014 18:00			0.10	0.06	0.29	0.29	0.10	
329	10/14/2014 19:00			0.12	0.10	0.11	0.11	0.12	
330	10/14/2014 20:00			0.05	0.07	0.07	0.07	0.05	
331	10/14/2014 21:00			0.03	0.01	0.02	0.02	0.03	
332	10/14/2014 22:00			0.00	0.00	0.00	0.00	0.00	
333	10/14/2014 23:00			0.00	0.00	0.00	0.00	0.00	
334	10/15/2014 0:00			0.00	0.00	0.00	0.00	0.00	
335	10/15/2014 1:00			0.00	0.00	0.00	0.00	0.00	
336	10/15/2014 2:00			0.00	0.00	0.00	0.00	0.00	
337	10/15/2014 3:00			0.01	0.01	0.02	0.02	0.01	
338	10/15/2014 4:00			0.02	0.01	0.01	0.01	0.02	
339	10/15/2014 5:00			0.01	0.00	0.00	0.00	0.01	
340	10/15/2014 6:00	1.23	Fractional dist. w/ DSN	0.02	0.00	0.00	0.00	0.02	
341	10/15/2014 7:00			0.03	0.00	0.00	0.00	0.00	
342	10/15/2014 8:00			0.00	0.00	0.00	0.00	0.00	

D

0.00

0.00

0.01

0.05

0.02

0.00

0.00

0.00

DISAG

Е

0.00

0.00

0.00

0.05

0.06

0.00

0.03

0.01

Lisle

F

Whtn Sewer

0.00

0.00

0.00

0.05

0.02

0.01

0.00

0.00

G

Whtn Water

Disaggregation Gages

0.00

0.00

0.00

0.05

0.02

0.01

0.00

0.00

Н

0.00

0.00

0.01

0.05

0.02

0.00

0.00

0.00

Argonne

0.00

0.00

0.00

0.05

0.02

0.08

0.00

0.00 0.01 0.05

0.00 0.00 0.07 0.06 0.05 0.10 0.16 0.03 0.01 0.00 0.00 0.00 0.01 0.02 0.01 0.01

0.00 0.02 0.00

Wooddale

В

Wheaton

Daily

А

10/14/2014 4:00

10/14/2014 5:00

10/14/2014 6:00

10/14/2014 7:00

10/14/2014 8:00

10/14/2014 9:00

10/14/2014 10:00

10/14/2014 11:00

1

314

315

316

317

318

319

320

321

С

0.77 Fractional dist. w/ DSN

Love Blue. Live Green.

HSPF Modeling

• Six Land Covers

- Two parameter sets
- Five Precipitation gages
- Flow accumulation at streamflow ga

Land Use Category	% Impervious	%	%
Single family residential, storm sewered; average lot size: < 0.15 acre > 0.15 acre > 0.2 acre > 0.3 acre > 0.4 acre > 0.5 acre > 0.5 acre > 0.6 acre > 0.8 acre > 0.8 acre > 1 acre	23.0 23.0 15.6 9.4 5.7 3.2 1.6 0.7 0.5 0.3	70.5 70.5 77.9 84.1 87.8 90.3 91.9 92.8 93.0 93.2	Forest 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5
non storm sewered; average lot size: > 0.15 acre > 0.2 acre > 0.2 acre > 0.3 acre > 0.4 acre > 0.5 acre > 0.6 acre > 0.7 acre > 0.8 acre > 1 acre	20.7 20.7 14.0 5.6 3.4 1.9 0.5 0.2 0.2 0.1	72.8 72.8 79.5 87.9 90.1 91.6 93.0 93.3 93.3 93.3 93.4	6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5
Low Density High Density	40 50	50 40	10
adway - sewered	85	15	0
adway - unsewered	65 50	35	0
siness Park	40	55	0

HSPF Modeling

- Six Land Covers
- Two parameter sets
- Five Precipitation gages
- Flow accumulation at streamflow gages

Salt Creek at Western Springs Simulated vs Recorded Flows

Calibration

- Hydrograph Output
- Annual & Monthly runoff comparison
- Event Calibration
 - Event selection
 - Event runoff comparison
 - Event Peak flow and stage

comparison

• FEQ modeling

- Hydrograph Output
- Annual & Monthly runoff comparison
- Event Calibration
 - Event selection
 - Event runoff comparison
 - Event Peak flow and stage comparison
 - FEQ modeling

	Average Mont	hly Flows	
	Simulated	Recorded	
Month	Flow (cfs)	Flow (cfs)	S/R
October	121.89	110.39	1.10
November	111.30	103.26	1.08
December	149.45	131.17	1.14
January	107.56	115.50	0.93
February	174.93	154.75	1.13
March	164.41	174.87	0.94
April	165.95	200.40	0.83
May	176.55	224.95	0.78
June	146.89	180.54	0.81
July	129.35	133.38	0.97
August	112.79	118.85	0.95
September	88.13	92.14	0.96
	Monthly Flow	Statistics	
Coefficient of M	odel Fit Efficienc	У	0.82
Correlation Coef	ficient		0.91
Average Absolute	Percent Error*		16.8%
Average Absolute	Error**		16.6%
Percent of Error	s Less than 10 Per	cent	40.9%
Percent of Error	76.5%		

- Hydrograph Output
- Annual & Monthly runoff comparison
- Event Calibration
 - Event selection
 - Event runoff comparison
 - Event Peak flow and stage comparison
 - FEQ modeling

Love Blue. Live Green.

- Hydrograph Output
- Annual & Monthly Calibration
- Event Calibration
 - Event selection
 - Event runoff comparison
 - Event Peak flow and stage comparison
 - FEQ modeling

- Hydrograph Output
- Annual & Monthly runoff comparison
- Event Calibration
 - Event selection
 - Event runoff comparison
 - Event Peak flow and stage comparison
 - FEQ modeling

- Hydrograph Output
- Annual & Monthly runoff comparison
- Event Calibration
 - Event selection
 - Event runoff comparison
 - Event Peak flow and stage comparison
 - FEQ modeling

- Hydrograph Output
- Annual & Monthly runoff comparison
- Event Calibration
 - Event selection
 - Event runoff comparison
 - Event Peak flow and stage comparison
 - FEQ modeling

Runoff Volume Statistics	
Number of Events	20
Number of Events Simulated High	9
Number of Events Simulated Low	11
Average Simulated/Recorded Ratio	0.99
Correlation Coefficient	0.79
Average Absolute Error	18.2%
Number of Events within 10%	45.0%
Number of Events within 25%	75.0%

- Hydrograph Output
- Annual & Monthly runoff comparison
- Event Calibration
 - Event selection
 - Event runoff comparison
 - Event Peak flow and stage comparison
 - FEQ modeling

Peak Flows

Calibration

- Hydrograph Output
- Annual & Monthly runoff comparison
- Event Calibration
 - Event selection
 - Event runoff comparison
 - Event Peak flow and stage comparison
 - FEQ modeling

Peak Stages

Decision to Automate

- Obsolete, unsupported programs
- Data formatting
- Allow DPC to update the TSF more frequently
- Complete work in-house

Automation Overview

- Collaborative effort with ECT and USGS
- Command-line interface utilizing python scripts and input files
- Generated graphs
- Next steps: Graphical User Interface (GUI)

Event Hydrographs Auto-Generated at Stream Gage

Automation

Recorded flow at Salt Creek at Elmhurst Simulated flow at Salt Creek at Elmhurst

WATER YEAR 2017 NCDC-WHEATON HOURLY PRECIPITATION

Love Blue. Live Green.

ECT > ectinc.com

DuPage County Watershed	Modeler	ſ				—	Х
Data Collection Data Proc	cessing	HSPF Modeling	HSPF Calibration	FEQ Modeling	FEQ Calibration		
Collection Period NOAA Precipitation USGS Precipitation Argonne Meteorology Wastewater Flow USGS Streamflow							
Love Blue. Live Green.							

> ectinc.com

DuPage County Watershed Modeler

Data Collection	Data Processing HSPF Modeling	HSPF Calibration	FEQ Modeling	FEQ Calibration	
	Precipitation Disaggregation Evapotranspiration Wastewater Flow				

DuPage County Watershed Modeler										
Data Collection	Data Processing HSPF Mo	deling HSPF Calibra	tion FEQ Modeling	FEQ Calibration						
	Precipitation Disaggregation Evapotranspiration Wastewater Flow	Select Gages Disaggregate Review Results								

DuPage County	Watershed Modeler					— 🗆 ×
Data Collection	Data Processing	HSPF Modeling HSPF Cali	bration	FEQ Modeling	FEQ Calibration	
		Simulation Period Precipitation Gages Land Covers Streamflow Gages Land Use Model Parameters				

DuPage County	Watershed Modeler	•			
Data Collection	Data Processing	HSPF Modeling	HSPF Calibration SFEQ Modeling	FEQ Calibration	
			Calibration Period Annual & Monthly Event Selection Event Calibration TSFNOAA Creation		

Х

Love Blue, Live Green,

Evan Baczek, EIT, CFM

Senior Civil Engineer Phone: 630.407.6759 ebaczek@dupageco.org Tom Price, P.E.

Principal Engineer Phone: 630.240.7653 <u>TPrice@ectinc.com</u>

Questions?

