A New Look at a Timeworn Problem: Southwest Harriet Feasibility Study

Ajay Jain, PE, CFM
Bridget Osborn, PE, CFM
PROJECT LOCATION
PROBLEM STATEMENT

How does a fully developed city address flooding due to undersized storm drain infrastructure in a cost effective manner with minimal disruption to residents?
AGENDA

1. History of Flooding
2. Infrastructure Background
3. MOU Partnerships
4. Design Goals
5. Modeling (XP-SWMM & Optimatics)
6. Vetting Options
7. Cost Benefit
8. Next Steps
History of Flooding

- Area identified in 1978 flood report
 - Complaint based flood mapping

1991
History of Flooding

- More complaints were received over the years

2002
HISTORY OF FLOODING

- Per current H&H modeling, structure impacts in the study area are predicted to be:

10-year storm
- 76 primary
- 113 secondary

100-year
- 125 primary
- 148 secondary

“Primary Structures” = residential, commercial, or institutional buildings
“Secondary Structures” = garages, sheds, or other non-habitable buildings

2012
INFRASTRUCTURE BACKGROUND

- Similar to other problem flood areas in the city:
 - Old storm drain system throughout
 - For SW Harriet area: late 1930s
 - Design standards
 - Much smaller storm events
 - Different methodology for rainfall intensity
 - Did they design for full-build out?
 - Fully developed area = limited options
 - Lack of Open Space
 - Typical city roadway section with public and private utilities
INFRASTRUCTURE BACKGROUND

▪ Prior to the 1978 report
 ▪ Some supplemental capacity added
 ▪ Pipes and pumps
 ▪ Didn’t solve all of the issues

▪ Implementation since 1978 – not much….
 ▪ Constructability, cost, and agency coordination issues
INFRASTRUCTURE BACKGROUND

- Detailed XP-SWMM models
 - Network defined at the manhole level
- 5 pilot feasibility studies planned or in progress
 - 3 using Optimizer by Optimatics - including SW Harriet
 - Takes standard range of solutions to determine best combination and location
“The MOU memorializes a commitment to working together in order to integrate goals, plans and investment strategies that improve the environments within the Minnehaha Creek sub-watershed in Minneapolis.”
DESIGN GOALS

- Avoid home buy-outs that would reduce tax base.
- Reduce street flooding.
- Reduce property flooding.
- No change in flow rates to creek/lake/channel.
MODELING – Optimizer Pilot

A. Optimatics
 A. Optimizer
 B. Pilot Study

B. EPA SWMM Framework
 i. XP-SWMM -> EPA Conversion
 ii. Need to Validate EPA model has similar results to XP-SWMM
 i. Matching Hydrology
 ii. EPA SWMM Version
 iii. Continuity Errors
Tips for Next Time

▪ No Multi-Links: 2 Separate Conduits
▪ Break-up Larger Models per Outfall/Smaller Networks

MODELING
OPTIMATICS MODELING

i. Entries
 - Costs
 - Penalties
 - Balancing Preferred Options

ii. Need to think about “alternatives analysis” differently

iii. Additions
 - New pipes
 - New storage locations
iii. Outcomes

- Optimatics recommended pipe upsizing vs. storage.
VETTING OPTIONS

A. Feasibility/Constructability
B. Coordination with other City Departments and MOU Partners
C. Utility Conflicts
D. Tree Impacts
PROPOSED IMPROVEMENTS
EXISTING FLOOD CONDITIONS
PROPOSED FLOOD CONDITIONS
COST BENEFITS

<table>
<thead>
<tr>
<th>Projects</th>
<th>EOPC</th>
<th># of Primary Structures Removed (100-yr)</th>
<th>$/Primary Structure Removed</th>
<th>Inundated Area Removed (ac) (10-yr)</th>
<th>Flooded Streets Removed (LF) (10-yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipeshed 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Proposed Projects</td>
<td>$ 36,844,000</td>
<td>35</td>
<td>$ 1,052,686</td>
<td>13.5</td>
<td>14919</td>
</tr>
<tr>
<td>Pipeshed 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Proposed Projects</td>
<td>$ 18,088,000</td>
<td>11</td>
<td>$ 1,644,364</td>
<td>3.1</td>
<td>434</td>
</tr>
<tr>
<td>Pipeshed 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Proposed Projects</td>
<td>$ 11,664,000</td>
<td>14</td>
<td>$ 833,143</td>
<td>2.6</td>
<td>2833</td>
</tr>
<tr>
<td>Pipeshed 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Proposed Projects</td>
<td>$ 1,716,000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1145</td>
</tr>
</tbody>
</table>
NEXT STEPS

- Completion of detailed XP-SWMM modeling city-wide to understand full scope of problem areas
- Determination of next areas for feasibility studies
- City-wide prioritization and planning
 - Equity and risk driven vs. complaint driven
- Implementation
 - Time line TBD
Q&A

Ajay Jain, PE, CFM
HR Green
P: 815.759.8331
E: ajain@hrgreen.com

Bridget Osborn, PE, CFM
HR Green
P: 651.659.7773
E: bosborn@hrgreen.com