Urban Flooding: How can planners help?

Kate Evasic & Nora Beck Chicago Metropolitan Agency for Planning

IAFSM 2018 Conference March 14, 2018

- CMAP background
- Impacts of urban flooding
- Urban flooding susceptibility index for the Chicago region

Chicago Metropolitan Agency for Planning

- Official regional planning organization and MPO for northeastern Illinois
- Adopted GO TO 2040 regional plan in 2010
- Local Technical Assistance Program

cal Technical Assistance Projects

Render Chicago Michobol IV: Agonas for Floring, 2013

Chicago Metropolitan Agency for Planning

Impacts of urban flooding in the CMAP region

Urban flooding impacts

Urban Flooding and Awareness Act

79% of payouts were in the CMAP region.

Total public and private flood insurance and disaster relief payouts for flooding, by geography, 2007-14

CMAP region \$1.8 billion
 Rest of Illinois \$325 million
 Statewide \$162 million

Note: "Chicago Metropolitan Agency for Planning region" does not include Kendall County. "Statewide" includes Public Assistance grants, which are not broken down by geography.

Source: Brad Winters, et al, "Report for the Urban Flooding Awareness Act," State of Illinois Department of Natural Resources, Office of Water Resources, June 2015, www.isws.illinois.edu/hilites/more.asp?id=ufaa&fr=hi.

S CMAF

Damages documented by federal programs

Total flooding damage payments associated with National Flood Insurance Program, Individual Assistance, and Small Business Administration programs per 2010 household by zip code in the Chicago region from 2003 to 2015.

0 2.5 5

10

Chicago Metropolitan Agency for Planning, 2017.

waukee Riv

90

Flooding damages and communities

Economically disconnected communities and total flooding damage payments associated with NFIP, IA, and SBA programs per 2010 household by zip code in the Chicago region, from 2003 to 2015.

Total Damage Costs of NFIP, IA, and SBA Payouts (per household, 2010)

Impacts to transportation and open space

- Road and transit closures can lead to declines in economic productivity, safety, and emergency service provision.
- Flooding adds to maintenance and replacement costs over time.
- Open space areas will face increasing floods or pressures to handle stormwater to the potential detriment of other habitat goals.

Warmer, wetter, and more variable

Urban Flooding Susceptibility Index

Purpose

Identify priority areas across the region for flooding mitigation activities.

What it is:

- Uses flooding-related factors to identify priority areas based on past flooding locations
- Study area:
 - Developed areas in the CMAP region
 - Riverine Index: areas within FEMA 100-yr floodplain/MWRD 100-yr inundation
 - Urban Index: outside of these areas

What it's not:

- Floodplain Inundation mapping
- Sewer System modeling
- Rainfall-runoff modeling

Statistical method to identify higher risk areas based on the observed relationship between reported flooding locations and flooding-related factors.

 $\frac{Percent \ of \ flood \ events \ in \ factor \ category}{Percent \ of \ study \ area \ in \ factor \ category} = Frequency \ ratio$

Calculation example:

Combined Sewer Service Areas for the Urban Index

Factor	Categories	Percent (%) of Study Area	Percent (%) of Flood Locations	Frequency Ratio
Combined Sewer	Present	15.8%	27.4%	2.35
Service Area	Absent	84.2%	72.6%	0.75

27.4% of flood locations in "Present" category 15.8% of study area is "Present" category $= FR \ of \ 2.35$

- 1. Assemble and categorize reported flooding locations
- 2. Assemble and categorize potential flooding-related factors
- 3. Calculate the frequency ratio for factor categories
- 4. Add frequency ratios for selected factors
- 5. Assess accuracy of index

- 1. Assemble and categorize reported flooding locations
- 2. Assemble and categorize potential flooding-related factors
- 3. Calculate the frequency ratio for factor categories
- 4. Add frequency ratios for selected factors
- 5. Assess accuracy of index

- 1. Assemble and categorize reported flooding locations
- 2. Assemble and categorize potential flooding-related factors
- 3. Calculate the frequency ratio for factor categories
- 4. Add frequency ratios for selected factors
- 5. Assess accuracy of index

Example: Age of First Development

Logic:

Identifies areas that were developed under different stormwater and floodplain management standards. Areas developed prior to these practices may be more likely to experience flooding.

	Categories	Percent (%) Study Area		
	Prior to 1974	41.2%		
2	1974-1982	5.4%		
3	1982-1992	3.3%		
4	1992-2002	5.0%		
5	2002-2012	4.6%		
6	Undeveloped/ post-2012	40.6%		

Example: Age of First Development

	Categories	Percent (%) of Study Area	Percent (%) of Flood Locations	Frequency Ratio
	Prior to 1974	41.2%	74.0%	1.8
2	1974-1982	5.4%	4.4%	0.81
3	1982-1992	3.3%	1.9%	0.56
4	1992-2002	5.0%	1.9%	0.38
5	2002-2012	4.6%	1.1%	0.24
6	Undeveloped/ post-2012	40.6%	16.8%	0.41

- 1. Assemble and categorize reported flooding locations
- 2. Assemble and categorize potential flooding-related factors
- 3. Calculate the frequency ratio for factor categories
- 4. Add frequency ratios for selected factors
- 5. Assess accuracy of index

- 1. Assemble and categorize reported flooding locations
- 2. Assemble and categorize potential flooding-related factors
- 3. Calculate the frequency ratio for factor categories
- 4. Add frequency ratios for selected factors
- 5. Assess accuracy of index

Urban Flooding Susceptibility Index

Urban Analysis

- All developed areas **outside** of the 100-yr FEMA floodplain or MWRD 100-yr Inundation area
- Flooding-related factors:
 - Topographic Wetness Index
 - Combined Sewer Service Area
 - Elevation differential between property and nearest FEMA BFE
 - Impervious Cover
 - Age of First Development
 - Precipitation variation with 10-yr, 2-hr storm from NOAA Atlas 14

Urban Flooding Susceptibility Index

Accuracy assessment using validation data

Index Level	Count of Flooding Locations	Flood Occurrence (%)		
1 (lowest)	406	0.9%		
2	625	1.3%		
3	896	1.9%		
4	1113	2.4%		
5	1360	2.9%		
6	1602	3.4%		
7	2504	5.4%		
8	4945	10.6%		
9	8719	18.7%		
10 (highest)	24460	52.5%		

- Help CMAP focus Local Technical Assistance Projects
- Assess urban flooding impacts to transportation network
- Explore impacts on vulnerable populations
- May help coordinate partners:
 - Inform open space preservation and restoration decisions?
 - Other activities?

- Incorporate additional reported flooding locations
- Explore additional flooding-related factors
- Assess how climate projections could be incorporated

 Integrate stormwater management decisions into local planning

1. Identify and prioritize potential flooding problem areas

Is urban flooding a potential problem and where?

1. Identify and prioritize potential flooding problem areas

1. Identify and prioritize potential flooding problem areas

Where have capital improvements occurred to mitigate flooding or improve stormwater management?

Local applications

- 1. Identify and prioritize potential flooding problem areas
- 2. Groundtruth

- Conduct surveys, interviews, and mapping exercises
- Confirm with public works, community development, other agencies

- 1. Identify potential flooding problem areas
- 2. Groundtruth
- 3. Identify opportunities for green infrastructure and engineering studies

Local applications

Limitations

 Distinguishing urban flooding from riverine flooding

Local applications

Limitations

 Dense urban areas require additional information to prioritize areas

Where to find the FSI?

- Available on the CMAP Data Hub: https://datahub.cmap.illinois.gov/
- Developing a how-to guide

CMAP DATA HUB Datasets Or	ganizations	Groups	About	Search	٩
<text><text></text></text>	Sea e.c Popu Popu	arch foi g. environme ular tags ulation	r Data ent GIS Cor	nformity analysis	Q

Funding and technical assistance

Grants

- Cook County CDBG-Disaster Recovery
- MacArthur Foundation

Technical assistance

- Christopher B. Burke Engineering
- Conservation Design
 Forum
- Geosyntec Consultants
- Hey and Associates
- Michael Baker International

Thank you!

Kate Evasic Associate Planner kevasic@cmap.illinois.gov Nora Beck Senior Planner nbeck@cmap.illinois.gov

