Reeseville Railroad Bridge Design Improvements in Response to 500-year Flood in Beaver Dam River Watershed

Michael Baker, P.E., CFM

March 9, 2011

Agenda

- Site Background
- June 2008 Storm Event
- Hydrology and Hydraulics Modeling
- Proposed Design

Site Background

Site Location Map

Reeseville Railroad Bridge

March 9, 2011

Page 4

AECOM

Watershed Map

Reeseville Railroad Bridge

March 9, 2011

Reeseville Marsh

Reeseville Railroad Bridge

March 9, 2011

Reeseville Railroad Statistics

- Originally built in 1858
- Track length is approx. 1.2 miles
- Embankment is approx. 5 to 8 feet above marsh bottom
- Track settles approx. 0.2 in/year due to organic soil base
- Serves approx. 300,000 Amtrack passengers per year
- Transports approx. 4.7 billion ton-miles of freight per year
- Track has closed due to flooding at least 8 times since 1930

June 2008 Storm Event

Gage Locations

Reeseville Railroad Bridge

March 9, 2011

Rainfall for June 2008 Flood

Rock River at Waupun, WI (USGS Gage 05423500)

Discharge Hydrograph for June 2008 Flood

Beaver Dam River at Beaver Dam, WI (USGS Gage 05425912)

Discharge Hydrograph for June 2008 Flood

Crawfish River at Milford, WI

Reeseville Railroad Bridge

March 9, 2011

June 2008 Flood Statistics

- Rainfall began 6/4/08 and lasted for 9 days
- Total rainfall was 14.48 inches
- Rainfall and discharge probabilities are estimated as greater than 500-year events
- Track was closed from 6/9/08 through 6/29/08 (20 days)
- Peak water surface elevation at site occurred on 6/16/08

Hydrology and Hydraulics Modeling

Modeling Approach

- Hydrology
 - HEC-HMS
 - Clark unit hydrograph method
 - Reeseville marsh treated as reservoir
 - Input parameters calibrated to gage data
 - Iterate input parameters and reservoir rating curve until accurate calibration is achieved
- Hydraulics
 - HEC-RAS steady flow
 - Reservoir rating curve used as starting condition

Watershed Map

Reeseville Railroad Bridge

March 9, 2011

Reeseville Marsh

Reeseville Railroad Bridge

March 9, 2011

Start o End of Compu	Project: CP f Trial: 02Jun2008, 00:00 Trial: 105ep2008, 00:00 te Time: 06Mar2011, 14:20:	Optimi: Basi Met 47 Con	ation Trial: T n Model: eorologic Moc trol Specifical	rial 1 Water Jel: Jun_2 tions: Jun_2	shed_Jun_2008 008 008
Element	Parameter	Units	Initial Value	Optimized Value	Objective Function Sensitivity
A	Clark Storage Coeffic	HR	75	114.69	-0.05
В	Clark Storage Coeffic	HR	250	244.50	-0.02
c	Clark Storage Coeffic	HR	20	5.8074	0.00
D	Clark Storage Coeffic	HR	40	90,892	-0.01
E	Clark Storage Coeffic	HR	75	76,458	-0.10
Ē	Clark Storage Coeffic	HR	225	207.53	0.15

Reeseville Railroad Bridge

Discharge Calibration at Beaver Dam Gage

Discharge Calibration at Crawfish River Gage

Reeseville Railroad Bridge

Stage Calibration at Project Site

Modeling Conclusions

- Hydrology
 - Calibrated model output compared well with gage data
 - Calibrated model used with Huff distribution storms to determine design discharge at project site
 - Reeseville marsh reservoir elevations used as downstream starting condition in HEC-RAS model
- Hydraulics
 - Flat hydraulic grade line confirms that marsh acts as reservoir for high flow events
 - Model used to determine impact of design alternatives

Proposed Design

Proposed Design

BENCH INTO EXISTING EMBANKMENT, RAISE GRADE TO TOP OF EMBANKMENT (2 STAGES MAY BE REQUIRED), ESTABLISH TRACK.

PHASE 2 PREPARE SECOND HALF OF EMBANKMENT AS ABOVE.

Questions?

March 9, 2011

