LID Modeling Using SWMM

Presented by: Gregory P. Kacvinsky, P.E. Foth Infrastructure & Environment IAFSM: September 29, 2009

Changing Design Criteria

Stormwater Analysis

Pre-LID World

- Pre- and post- development peak runoff comparison
- Pond volume and peak flow determination
- Sewer sizing / channel sizing
- Event-based analysis (i.e. 100-yr, 24-hr storm)

Stormwater Analysis

- Pre- and post- development runoff <u>VOLUME</u>
- Match pre-existing hydrology
- Continuous simulation

Conventional Modeling

TR-20
HEC-HMS
PondPack
HydroCAD
SWMM

SWMM and LID Modeling

Storm Water Management Model (SWMM)
 EPA-SWMM v. 5.0 (U.S. EPA)
 XP SWMM (XP Software)
 PC SWMM (Computational Hydraulics International)
 Info SWMM (MWH Soft)
 InfoWorks (Wallingford)
 RECARGA

SWMM and LID Modeling

EPA SWMM v. 5.0.16 (updated July 2009)

- A modeling platform that can perform all needed LID modeling needs:
 - Rainfall / runoff calculation
 - Infiltration within storage areas
 - Sewer flow calculations (gravity and pressure)
 - Detention pond / flood control
 - Pumps
 - Event-based <u>and</u> continuous simulation

What do we need model to show?

Emerging requirements:

- Retention/infiltration for frequent (i.e. "water quality") events
 - 1-year / 2-year / 1-inch / etc.
 - Water Quality Volume
- Infiltration matching existing conditions
 - 90% of pre-development infiltration (Wisconsin)
 - Infiltrate XX% of post-developed runoff
 - 80% reduction in TSS

What do we need model to show?

Emerging requirements:

Requires event-based and continuous modeling

Infiltration Modeling in SWMM

- Shares components of traditional model
 - Subcatchments
 - Detention pond
 - Pond outlet structure
- Additional components
 - Bioretention storage
 - Bioretention infiltration
 - Infiltration recovery

Infiltration Modeling

Properly designed and constructed bioretention:
 Unique infiltration characteristics
 Can exceed 15-20 in/hr (initial)
 K_{sat} can be at or below 0.5 inches per hour
 Soils achieve K_{sat} often within

- 10-20 minutes of onset of storm
- Vegetation maximizes infiltration

Infiltration Modeling

Bioretention infiltration in EPA SWMM is based on Green-Ampt Equations **THREE VARIABLES Capillary Suction Head** Conductivity **Initial Deficit** Green-Ampt uses depth of water above soil as a factor in infiltration

GREEN_AMPT	
Value	
10	
.4	
.4	
Soil capillary suction head (inches or mm)	
OK Cancel Help	

Soil Information is Critical

Establish infiltration rate Existing Soil Data: USDA / NRCS Soils Maps Soil Borings Test trench/pit Water table location Soil type will drive model structure **Green-Ampt equation most** dependent on K_{sat} Minimum 0.3 - 0.4 inches/hour

Infiltration Recovery

Recovery of infiltration rate
Important for continuous models
SWMM default is 7 days
Can be modified to local conditions

4-7 days is typical

SWMM Model Schematic

Bioretention Considerations

- Model depends on design features:
 - Amended soil
 - Depth of ponding
 - Depth of cut, impact on underlying soils
 - Underdrain or no underdrain
 - Long-term impact of plant growth and root structure
 - Studies have shown high infiltration rates, even in clayey soils

Output Data: Event-Based

- Huff 1st Quartile

 1-yr, 1-hr storm
 1.0 inches

 Rain garden nears overflow level, but no discharge
 - Rain garden volume is recaptured after 24-36 hours

Output Data: 100-year Storm

- ✤ Huff 3rd Quartile
 - 100-yr, 24-hour storm
 - 7.0 inches
- Rain garden overflows, as expected

Output Data: Continuous Simulation

- Continuous Rainfall Data (6-8 months)
- Good test of model under real climate conditions
 - ~ 30 individual rainfall events

Output Data: Continuous Simulation

Output Data: Continuous Simulation

Underdrain Hydraulics

Wrap-up

EPA SWMM LID Modeling

- Simple modeling technique, easily adaptable to varying SWMM models
- Ideal when BMPs part of integrated hydraulic system
- Infiltration rates drive the model
- Need adequate soil data
- Useful for continuous simulation (CS)
- Can be integrated with water quality modeling
 - Pollutant removal efficiencies

Wrap-up

What Does SWMM Modeling Reveal?

- Storage in bioretention areas is significant
 - 5% or more of storage volume for 100-yr (design) event is contained within bioretention cells
- Bioretention cells should be able to infiltrate most stormwater runoff, even without underdrain
- Bioretention footprint (as % of site) can range from 2% 5%. Selected infiltration rate and local requirements will impact this number.

New Review Criteria

- Reviewers have new set of standards to consider:
 - What are appropriate ranges for infiltration variables?
 - What is appropriate depth and drawdown time?
 - How do we establish baseline (existing) infiltration hydrology?
 - How relevant is the Curve Number? Should we adapt to new methodology?

