Oak Grove Road over Unnamed Tributary to Lawrence Creek: Confluences, Urbanization, and Permitting

Joel N. Krause, P.E., CFM – Baxter & Woodman Scott E. Lueken, CFM – Baxter & Woodman

March 14, 2018

Agenda

- 1) Project Background
- 2) Project Need
- 3) Hydrologic Methodology
- 4) Hydraulic Methodology
- 5) Design Criteria
- 6) County Stormwater Management Permit
- 7) Wetland Permitting
- 8) Lessons Learned

Project Background

Client: McHenry County Division of Transportation

Project Location

- Oak Grove Road at Unnamed Tributary to Lawrence Creek
- Chemung Township

 Unincorporated
 McHenry County

Project Improvements

- Bridge replacement (22' Bridge to Triple 10'x7' Culverts)
- Roadway widening
- Installation of Guardrail
- Ditch re-grading

- 80% Federal
- 20% Local (MCDOT)

Project Background

Project Background

Source: Google Earth

- 2 stream branches converge into single stream approx. 70' upstream of bridge crossing
- Approx. 1,700' downstream of bridge crossing the stream flows into Lawrence Creek

Project Need

- Existing superstructure of bridge is structurally deficient
- Benefits of project include:
 - Safer movement of vehicular traffic
 - Reduced risk of flooding
 - Improvement in ride quality
 - Reduction of future maintenance costs

Project Need

- Phase I (2015) Scope to Determine:
 - Structure Type
 - Waterway Opening
 - Geometric Deficiencies
 - Cost
 - Required R.O.W.
 - Permitting Need

Project Need

- Phase II (2017) Scope:
 - Detailed Design
 - Permitting
 - Issuance of Stormwater Management Permit / Approval of Hydraulics
 - County DOT
 - IDOT BLRS
 - USACE

StreamStats

- Used to determine discharges (Rural Regression Equations)
- No regulatory data available
- Separate analyses for each reach upstream of the bridge

Source: USGS StreamStats

StreamStats

Separate StreamStats for stream downstream of confluence and upstream of bridge

Source: USGS StreamStats

FEMA FIRM

Zone A Floodplain immediately downstream

No designated floodplain upstream

HEC-RAS Flow Calibration – Iterative Process

- XS 7 & 8 shared ground points with XS 10 & 11
- Iterative process to obtain matching Water Surface Elevations

HEC-RAS Flow Calibration – Iterative Process

											Flow Ca	libration										
Dak Grove F E XISTING						When change	in elev	orosses 0 (neg to p	os)		Within a h	undred		Re	ach i	2						
																						Streamstats
	Reach 1				Reach 2			XS7-XS10			Reach1	-			Reach 2	-		XS8-XS11	F	Reach ⁻ F	Reach 2	
		Elevation (ft)				Elevation (ft)		Elevation (ft)				Elevation (ft)				Elevation (ft)		Elevation (ft)				
10	247	913.6825		10	239	913.6799		0.0026		10	247	915.2258		10	239	915.7674		-0.5416		0	0	
20	304	914,1385		20		914.1226		0.0159		20	304	915.4846		20	296	915.8271		-0.3425		0	0	
100	438	915.1086		100	429	915.0779		0.0307		100	438	915.8279		100	429	916.1062		-0.2783		0	0	
200	498	915.5225		200	488	915.4894		0.0331		200	498	915.9354		200	488	916.2833		-0.3479		0	0	
500	573	916.8276		500	564	916.8021		0.0255		500	573	916.8953		500	564	917.0653		-0.17		0	0	
	20				-20						20				-20							
	5				-5						5											
10	313	913.68		10	177	913.68		0		10	313	915.52		10	177	915.43		0.0900		66	-62	
20	370	914.13		20	234	914.1		0.03		20	370	915.69		20	234	915.56		0.1300		66	-62	
100	505	915.11		100	368	915.09		0.02		100	505	915.94		100	368	915.94		0.0000		67	-61	
200	567	915.56		200	431	915,53		0.03		200	567	916.02		200	431	916, 19		-0.1700		69	-57	
100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	
10	347			10	139			0		10	347	915.6362		10	139	915.0872		0.549		100	-100	
20	404			20				0		20	404	915,7689		20	196	915.2971		0.4718		100	-100	
100	538			100	329			0		100	538	915,9833		100	329	915.8237		0.1596		100	-100	
200	598			200	388			0		200	598	916.0542		200	388	916.0922		-0.038		100	-100	
500	673			500	464			0		500	673	916.9177		500	464	916.994		-0.0763		100	-100	
000	10			000	-10					000	10	0.0.0111		000	-10	0.0.004		0.0100		.00		
10	357	913.6557		10		913,7007		-0.045		10	357	915.6614		10	129	914.9786		0.6828		110	-110	
20	414	914,1469		20		914,1341		0.0128		20	414	915,7891		20	186	915.2147		0.5744		110	-110	
100	548	915,1008		100	319	915.0862		0.0120		100	548	915,9965		100	319	915,7919		0.2046		110	-110	
200	608	915.5175		200	378	915.4974		0.0201		200	608	916.0658		200	378	916.0709		-0.0051		110	-110	
500	600			200	454						683				454						-110	
500	603	916.825		500	454	916.8096		0.0154		500	603	916.9202		500	454	916.988		-0.0678		110	-110	

- Reach 1 approx. 66 cfs added: 10yr: 247 cfs) 313 cfs
- Reach 2 approx. 66 cfs subtracted: 10yr: 239 cfs => 177 cfs

Urbanization

- Account for existing urbanized/developments in the watershed
- Urban Technique to convert rural regression eqn's (StreamStats) to urbanized flows
- 0.024 sq.mi. out of 1.01 sq.mi for 2.4%

Existing Urbanized Area (approx. 2.4%)

Percent Imperviousness within urbanized area – 12.5%

Relationship between Percentage of Imperviousness and Housing Density. From Water-Resources Investigations 79-36² "Effects of Urbanization on the Magnitude and Frequency of Floods in Northeastern Illinois" Pg 19 Figure 4-101.02b

Figure 4-101.02b – IDOT Drainage Manual

9 residential units within 0.024 sq.mi. urbanized area, which is 375 residential units per sq.mi.

375 residential unitsper sq.mi. equates to12.5% imperviousnesswithin urbanized area

Ratio of Flood Magnitudes for Flood Frequency

- 2.23 for 2-yr flood
- 1.78 for 10-yr flood
- 1.67 for 25-yr flood
- 1.60 for 50-yr flood
- 1.55 for 100-yr flood

Figure 4-101.02d - IDOT Drainage Manual

Determination of Urbanized Flow

C		-to Flow Do	•					
	ed StreamSt		tes	.[]				
Reach 2 (n	northern reach	1)						
Storm Event	StreamStats Flows, cfs	2.4% of StreamStats Flows	Ratio of Flood Magnitudes	Urbanized Flows, cfs	-	Revised Flows, cfs	Increase in Flow from Original StreamStats Flow, cfs	
	A	В	С	D = BxC	E = A*(1-0.024)	F = D+E	G = F-A	
2-yr	101	2	2.23	5	99	104	3	
10-yr	239	6	1.78	10	233	243	4	
20-yr	296	7	N/A.	N/A.	289	300 *	4	
25-yr	314	8	1.67	13	306	319	5	
50-yr	373	9	1.60	14	364	378	5	
100-yr	429	10	1.55	16	419	435	6	
200-yr	488	12	N/A.	N/A.	476	500 *	12	

Urbanized Flow Rates applied to Reach 2 (Northern Reach Only)

10-yr: 4 cfs added to original StreamStats rural flow

100-yr: 6 cfs added to original StreamStats rural flow

Source: Google

Hydraulic Methodology

HEC-RAS used for Hydraulics

- Existing, Natural, and Proposed Conditions Modeled
- Proposed Conditions: 1' Embedment and 2' weir walls
- No HEC-18 scour analysis required

Hydraulic Methodology

HEC-RAS used for Hydraulics

- Weir walls modeled using Depth Blocked function
- Manning's roughness (n) for natural bottom
- Weir walls conform to stream geometry at overbanks

Design Criteria

Assessment of Sensitive Flood Receptors

Upstream homes assessed for flooding due to backwater

No homes in danger of flooding

Bridge not source of flood damage, as certified by Chemung Township

Source: Google Earth

County Stormwater Management Permit

Will this project require a Floodway Construction Permit?

County Stormwater Management Permit

McHenry County Department of Planning & Development

- Compensatory Storage required for fill within the floodplain
- Insufficient Compensatory Storage for 10-yr to 100-yr
- A Request for Waiver from compensatory storage requirement for 10-100 yr floodplain cut
- Waiver request granted by McHenry County

Permanent Impacts to Waters of the U.S.

- Impacts to wetlands
- Permanent Impacts to WOUS = 0.06 acres
- Compensatory mitigation not required (USACE) since < 0.10 acres</p>
- IDOT required mitigation, which was done through wetland banking

- Minimize impacts by:
 - Maintaining alignment of channel with proposed culverts
 - Embedment of culvert low flow fish passage (bridge to culvert)
- RP3 (Transportation Projects) and RP7 (Temporary Construction Activities) of the Regional Permit Program by USACE

Source: Google

National Wetlands Inventory Map vs Delineated Wetlands

Wetland Banking

- Mitigation Agreement between Sybaquay Council Wetland Mitigation Bank and McHenry County Division of Transportation
- County purchased 0.05 credits for impacted 0.03 ac of wetlands
 - Based on 1.5:1 ratio

Wetland Banking in McHenry County

McHenry County Wetland Restoration Fund

- Isolated wetlands within Fox River Watershed
- Review matrix for eligibility of potential projects
- Total fund availability for all projects is up to \$198,490
- Info available at: <u>https://www.co.mchenry.il.us/coun</u> <u>ty-government/departments-j-</u> <u>z/planning-</u> <u>development/divisions/water-</u> resources

Source: Google

Lessons Learned

- Flow Optimization required to accurately model 2 reaches and a confluence
- Urbanization (existing land use) of the watershed required;
 - Current StreamStats incorporates urban regression equations
- Open communication is needed, especially when coordinating with multiple agencies
 - IDOT BLRS
 - McHenry County DOT
 - McHenry County P&D
 - USACE

Joel Krause, P.E., CFM

- 815-444-3315
- jkrause@baxterwoodman.com
- Scott Lueken, CFM
 - 815-444-3358
 - slueken@baxterwoodman.com

