Groundwater Flooding in Residential Subdivisions

Steve Amann, P.E., CFM
Baxter & Woodman, Inc.
Introduction

- Basement flooding from groundwater seepage
- Out of the ordinary for floodplain managers
- Two good things that don’t always go good together:
 - Stormwater infiltration
 - Basements in the Midwest
- Potential issues to consider
 - Groundwater levels fluctuate slowly/hard to predict
 - Soils usually not homogeneous
 - Mass grading and other changes can impact groundwater flows
 - Building elevations unknown at due diligence stage
- Names were changed
A Tale of Two Subdivisions

- Subdivision No. 1 – Phreatic Farms
 - 160 Acres; 205 single-family lots
 - Preliminary plat filed in 1989
 - No records of soil borings, field tile investigation
 - NRCS soils maps:
 - Well-drained soils
 - More than 80” to groundwater
 - Not far from floodplain
 - 500 feet from edge of subdivision to SFHA
 - BFE: 2’ below ground surface
Phreatic Farms

- Property filled for grading and drainage
- Detention ponds constructed in granular soils with normal gravity outlets
- No groundwater issues observed in construction
 - Mass grading
 - Underground utilities
 - Basement construction
- Sump pumps discharge to storm sewer system
- Homes built and occupied from 1993 to last year
Phreatic Farms

- First concerns voiced in Fall 2004
- Low rainfall in 2005; concern abated
- Adjacent development began due diligence
- Concerns resurfaced in 2006
 - Sump pump run times
 - Up to 12 cycles per hour for 10 days after rain
 - Continuously for 14 days after rain
 - Continuously year-round
 - Never run
 - Loss of power
 - Lowering pond normal water level
So, what did we do?

- Preliminary investigation Fall 2004
 - Researched old plans, calculations and reports
 - Water surface observation/recording
 - Detention ponds
 - Natural water bodies
 - High groundwater level approximately 594
- Solution: Convey water away from subdivision by gravity
 - Extend conveyance to nearby River
 - Large-diameter storm sewer: $780,000
 - Swale with road culvert: $580,000
 - Needed ROW/easements
 - Too expensive/public expense vs. private nuisance
 - Concerns abated with lower groundwater levels
 - Wait for downstream development
Phreatic Farms

- Renewed investigation in 2007
 - Worked with adjacent development
 - Soil borings
 - 3-4 feet of clay under topsoil
 - Loose to firm sand and gravel to end of borings
 - Groundwater levels at 590.5 to 592.5
 - Drawdown test
 - Additional ground surveying
 - Basement elevations: inconsistent with sump pump run times
 - Exploratory excavation in specific areas
 - Looked for field tiles in subdivision
 - Found porous soils and rapid groundwater movement
 - Traced/repaired downstream field tiles
 - Balance against pond size/depth reduction
 - Resident survey
 - Required minimum basement elevations
<table>
<thead>
<tr>
<th>House</th>
<th>Drain Tile Invert</th>
<th>Pumping – Dry</th>
<th>Pumping – Wet</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>590.35</td>
<td>12/hour</td>
<td>Constant</td>
</tr>
<tr>
<td>2</td>
<td>590.63</td>
<td>Seldom</td>
<td>Constant</td>
</tr>
<tr>
<td>3</td>
<td>591.76</td>
<td>Constant</td>
<td>Constant</td>
</tr>
<tr>
<td>4</td>
<td>591.79</td>
<td>Constant</td>
<td>Constant</td>
</tr>
<tr>
<td>5</td>
<td>591.82</td>
<td>Constant</td>
<td>Constant</td>
</tr>
<tr>
<td>6</td>
<td>592.17</td>
<td>12/hour</td>
<td>Constant</td>
</tr>
<tr>
<td>7</td>
<td>592.40</td>
<td>Constant</td>
<td>Constant</td>
</tr>
<tr>
<td>8</td>
<td>592.56</td>
<td>Seldom</td>
<td>Seldom</td>
</tr>
<tr>
<td>9</td>
<td>592.61</td>
<td>Seldom</td>
<td>Seldom</td>
</tr>
<tr>
<td>10</td>
<td>592.74</td>
<td>Seldom</td>
<td>6/hour</td>
</tr>
<tr>
<td>11</td>
<td>592.81</td>
<td>Seldom</td>
<td>12/hour</td>
</tr>
<tr>
<td>12</td>
<td>592.88</td>
<td>Seldom</td>
<td>6/hour</td>
</tr>
<tr>
<td>13</td>
<td>592.89</td>
<td>Seldom</td>
<td>Seldom</td>
</tr>
<tr>
<td>14</td>
<td>592.91</td>
<td>Seldom</td>
<td>Seldom</td>
</tr>
<tr>
<td>15</td>
<td>592.99</td>
<td>Constant</td>
<td>Constant</td>
</tr>
<tr>
<td>16</td>
<td>593.25</td>
<td>Seldom</td>
<td>Constant</td>
</tr>
<tr>
<td>17</td>
<td>593.32</td>
<td>Seldom</td>
<td>Constant</td>
</tr>
</tbody>
</table>
Phreatic Farms

- Developed alternative solutions
 - Public groundwater wells through subdivision
 - Private groundwater wells near homes
 - Infiltration pipe or trench through subdivision
 - Piped outlet at end of subdivision
 - Back-up power
 - Convert basements to crawlspaces

- Hired Hydrogeologist
 - Used data from adjacent development
 - Developed and ran Winflow groundwater model
 - Tested alternative solutions
Phreatic Farms

- Results
 - Public groundwater wells (11) through subdivision
 - Limited benefit at basements
 - Lowering of water level in existing ponds
 - Public responsibility for construction, operation and maintenance
 - $300,000 cost
 - Needs outfall: additional $780,000
 - Infiltration pipe or trench (“French drain”) through subdivision
 - Needs gravity outfall ($780,000); would be below BFE
 - Lowering of water level in existing ponds
 - Public responsibility for construction and maintenance
 - Not considered further
 - Piped outlet at south (downstream) end of subdivision
 - Lowering of water level in existing south pond
 - Decreasing benefit at basements going north
 - Public responsibility for construction and maintenance
 - Not considered further
Phreatic Farms

- Private groundwater wells (external sump pumps) at affected homes
 - Highest benefit at basements
 - Re-use existing drainage system within subdivision
 - Private construction, operation and maintenance cost
 - $12,000 per home
 - Village agreed to fund 13 individual pumps
- Private improvements
 - Back-up power
 - Basement conversion
- Downstream field tiles
 - Repair/replace by Village
 - Ongoing monitoring and maintenance
- Adjacent development
 - Changed housing product to eliminate basements
 - Clay liner proposed for detention pond
 - Utility installation not as difficult as expected
Phreatic Farms

- What’s happening now?
 - Most (internal) sump pump run times reduced significantly
 - Village maintaining field tiles
 - Residents monitoring adjacent development
 - Detention pond normal water level still an issue
 - One home still has sump pump issues
Subdivision No. 2 - Infiltration

Acres

- Preliminary Plat filed in 1992
- 60 Acres; 153 single-family lots
- Soil borings indicated
 - Granular soils at 1 to 8 feet below grade
 - Various groundwater levels throughout site
- No evidence of field tile survey
- NRCS maps
 - Well-drained soils
 - More than 80” to groundwater
- Upstream of floodplain
 - 2,000’ from edge of subdivision to SFHA
 - BFE 5’ below ground surface
- Minimal mass grading
- Sump pumps discharge to storm sewer system
Infiltration Acres

- Stormwater planned to infiltrate
 - Open-bottom drainage structures
 - Detention ponds
 - Primary outlet through infiltration
 - Overflows above ground
- Homes built and occupied from 1994 to 2000
- No concerns voiced by residences until Spring 2008
 - Little sump pump usage until September 2007
 - Rainfalls in March 2008 triggered significant sump pump run times
 - Rainfalls in May 2008 increased sump pump run times
 - Head in storm sewer system against sump pumps
 - Sump pumps ran continuously, but:
 - Sumps backed up into basements
 - Seepage from walls and floors
Infiltration Acres

- **Residents:**
 - Purchased and installed additional pumps
 -Disconnected pumps from storm sewer system
 - Contacted Village for assistance
 - Concerned about lowering pond level
- **Village:**
 - Inspected storm sewers for blockages
 - Observed detention pond water levels
 - Bypass-pumped storm sewers to reduce head against sump pumps
 - Concerned about downstream impacts of pumping
Infiltration Acres

- So, what did we do about it?
 - Met with residents to assess specific problems
 - Researched old plans and reports
 - Ground survey:
 - Top of foundation
 - Pond levels and storm sewer inverts
 - Hired soils consultant
 - Installed five groundwater observation wells
 - Installed one well logger
 - Checked wells monthly
 - Downloaded daily logger readings
 - Sealed bottoms of open drainage structures
Infiltration Acres

- Investigated field tiles
 - Records from adjacent work
 - Field tile installer/locator
- Reviewed information and options with Village Staff
 - Groundwater levels vs. drain tile inverts
 - No gravity outfall readily available
 - Maintain existing pond normal water level
- Pursued implementation of limited improvements
 - Surface conveyance improvements
 - Field tile extensions and repairs
 - Opinion of cost for groundwater pumping station:
 - Pump station and local drainage improvements: $230,000
 - Downstream conveyance improvements: $380,000
 - Total: $610,000
Infiltration Acres

- So, what’s happening now?
 - Monitored groundwater through November 2009
 - Groundwater responds quickly to rainfall events
 - Groundwater subsided over time
 - No concerns since May 2008
 - Groundwater pumping station unfunded
Lessons Learned

- Ordinance Amendments
 - Reviewed other agencies’ requirements
 - Will County, Illinois:
 - Lowest floors above seasonal high groundwater
 - Reportedly, 2/3 of County becomes unbuildable
 - Ordinance not passed
 - Eau Claire County, Wisconsin
 - New ordinance
 - No enforcement experience
 - Waukesha County, Wisconsin
 - Relatively new ordinance
 - Limited enforcement experience
 - Staff concerned about veracity of reports
 - Field tile survey requirements
 - Clarified as requirements, not recommendations
Lessons Learned

- Considered local ordinance modifications
 - Resident protection vs. development time/cost
 - Met with development community
 - New regulations considered too harsh
 - Time and cost required to complete studies
 - Historical data difficult to obtain; monitoring periods excessive
 - Data inconclusive:
 - Local vs. global
 - Perched groundwater tables
 - Variables hard to mandate
 - Ground elevations (existing vs. proposed)
 - Rainfall patterns/groundwater levels
 - Building styles/elevations
 - Soil types/locations
 - Most developers perform adequate due diligence
Lessons Learned

- Ordinance amendments currently being considered
- Formalize soils report requirements
 - Minimum number of borings
 - Appropriate locations for borings
 - Groundwater information
 - Development plan:
 - Ground/groundwater/building elevations
 - Soils strata
 - Soils consultant requirement
 - During concept plan, ideally
 - Prior to preliminary plat, minimally
 - Consultation during final plat and plan preparation
- Basements are not a requirement
 - Option between builder and homeowner
 - Entail risk
 - Whose problem is it?
Lessons Learned

- Due Diligence: There is no substitute.