

North Sandwich Stormwater Conveyance Analysis Study

An EPASWMM Modeling Case Study

Presented By:

Timothy N. Paulson, P.E., CFM Tyler A. Meyer, E.I., CFM Engineering Enterprises, Inc.

IAFSM 2019 Annual Conference March 13, 2019

Presentation Overview

Background Information

Communication & Key Decisions

Stakeholder Outreach Survey

Stormwater Modeling

13% 24.6% 30.64

Q&A

Investigation Areas: Causes & Solutions

Results & Lessons Learned

Background Information

Background Information

Background Information

- 2017 population of 7,387
- Study Area Limited to North of Tracks
- Residential
 - Central Downtown
 - 3 Newer Subdivisions

Communication & Key Decisions

- Kickoff Meeting
 - Pre-Modeling Discussion
 - Gather Data Sources
 - Confirm Scope and Expectations
 - Discuss Key Problem Areas
- Stakeholder Outreach
 - Combined Stormwater and Sanitary Public Meeting
- Progress Meetings
 - Post Existing Conditions
 - Confirm Problems Areas and Focus Alternatives

YEARS

Communication & Key Decisions

• EPASWMM 5.1

- Readily Available
- City can update for future design and development

- Conjunction with Sanitary Evaluation
- Survey Statistics
 - 1,855 Delivered
 - 385 Respondents
 - 20.8% Return Rate
 - 187 Experienced Flooding

City of Sandwich Public Works Department Resident Flooding Survey				
Ruppese: The purpose of conducting this survey is to collect pertinent information to be considered during the professional engineering evaluation of the surface value and bearsement flooding issues in the C4 yob Sindokio. This initial focus of the study will be generally north of the railroad tracks, but surveys from all locations are being requested.				
Instructions: Please provide accurate responses to the questions regarding the floading issues associated with your realistices. Desar letteriors the diagram on the back suid of this form white nonpelling the form. In the space provided, include additional information that you would like the engineering consultant to be aware of and consider during the analysis. Once you have completed the survey, please deliver the completed form to the following location:				
City of Sandwich 144 E: Rainoad Street Sandwich, IL: 60549				
Questions: If you have any questions relative to this form, please contact Tom Horak, Director of Public Works, at (815) 786-8802 or <u>city engineer@sandwich.il us</u> .				
Meeting: The City intends to hold a stakeholders' meeting on Monday, July 16, 2015 at 700 P.M. at 128 E. Rainoid Street as part of the rormal Committee-As-AVMEC Council Meeting to discuss the existing sanitary and storm systems and to answer questions regarding the evaluation process. The public is encouraged and invited to attend.				
Name:				
Address:				
Telephone: Email Address:				
1. Has storm or sewage water ever flooded your property? Yes: No:				
If so, what were the limits of the flooding? Yard:Street:Basement: Other:				
2. In the past ten years, how many times has your home flooded?				
Never:1 time:2 times:3 times:5 or more times:				
If you have experienced flooding, how did the flood water enter your home (check all that apply)?				
Sewer Drain: Door: Window: Cracks in Wall: Other: N/A:				
3. Have you experienced sanitary sewer backups (through drain, toilet, etc.)				
Yes:No: If yes, how deep was the basement flooding?				
(Please complete the back side of the survey, also.)				

- During the flood events that occurred on July 21/22, 2017 and/or October 14/15, 2017, what area of your home flooded (check all that apply)?
- No Flooding:_____ Crawl Space:_____ Basement:_____ First Floor:_____ Garage:_____
- Do you have a basement? Yes: ____ No: _____
 If so, please provide the measurement from the floor slab, to the top of your foundation (Dimension "A" in the diarami: ______
- Do you have a crawl space? Yes:____ No:____

 If so, please provide the measurement from the floor stab, to the top of your foundation (Dimension
 "B" in the diarram):
- 7. Do you have a sump pump?
 Yes:_____
 No:_____
 Not Sure:_____

 If so, where does the sump pump discharge?
 Yard:_____
 Plumbing:_____

 Not Sure:
 Other:
 Not Sure:
- 8. Do you have a waste (sewer) ejector pump? Yes:____ No:____ Not Sure:____
- 9. Do you employ any of the following sanitary sewer backup protections?

Floor Drain Plug:____ Standpipe:____ Overhead Sewer:____ Check Valve:____ Other: _____

Typical House Foundation	Additional Comments:
\sim	
Sump Pump Discharge First Floor Tollet	
Top Of Foundation Overneed	
Foundation Visite Visite	
Sump Basement Pump	-
Foundation Drain Tite Data	
Floor State	

Thank you for taking the time to complete the survey!

Survey Respondent Flooding Frequency

Existing Conditions

- Sub-Watershed Delineation
 - City One Foot Topography
 - Survey Critical Points
 - Field Investigations

Sub-Watershed Delineation

Existing Conditions

- Build Existing Conditions Model
 - City-wide GIS Database, Record Drawings, Previous Studies, Field Investigations
 - Existing Storm Sewer, Manholes, Basins, Depressional Storage

Existing Conditions Model

Existing Conditions

- Subcatchment Inputs/Assumptions
 - Percent Impervious
 - Manning's N and Depth of Depression
 - Infiltration
 - Model Results Check

Subcatchment S-2954A		
Property	Value	
Name	S-2954A	^
X-Coordinate	909149.711	
Y-Coordinate	1819268.270	
Description		
Tag	CultivatedCrops	
Rain Gage	RAIN_2y_1h	
Outlet	D-2954A	
Area	89.20	
Width	13000	
% Slope	0.5	
% Imperv	5	
N-Imperv	0.015	
N-Perv	0.15	
Dstore-Imperv	0.1	
Dstore-Perv	0.2	
%Zero-Imperv	25	
Subarea Routing	PERVIOUS	
Percent Routed	50	
Infiltration Data	GREEN_AMPT	~
User-assigned name	of subcatchment	

Subcatchments

- Percent Impervious
 - Developed, Low Intensity = 30%
 - Cultivated Crops = 5%

NLCD 2011 (CONUS) Land Cover, 30m x 30m resolution

Land Cover	Description	Imperviousness
Code		Coefficient
11	Open water	1.1
21	Developed, open space	13.4
22	Developed, low intensity	29.1
23	Developed, medium intensity	48.7
24	Developed, high intensity	63.0
31	Barren land (rock/sand/clay)	24.7
41	Deciduous forest	4.1
42	Evergreen forest	8.0
43	Mixed forest	2.5
52	Shrub/scrub	6.8
71	Grassland/herbaceous	5.2
81	Pasture/hay	5.8
82	Cultivated crops	5.8
90	Woody wetlands	1.5
95	Emergent herbaceous wetlands	1.5

Land Cover Imperviousness Coefficients (from Civco et al 2006)

Subcatchments

- Impervious Check
 - 9th & Eddy St Block
 32% Impervious
 - Model Assumption
 30% Impervious

Subcatchments

- Manning's N Value
 - N-Perv = 0.15 short grass
 - N-Imperv = 0.015 rough asphalt
- Depth of Depression Storage
 - Dstore-Perv = 0.20
 - Dstore-Imperv = 0.10

Typical Depression Storage Values

Impervious surfaces0.05 - 0.10 inchesLawns0.10 - 0.20 inchesPasture0.20 inchesForest litter0.30 inches

(Source: ASCE,(1992), Design & Construction of Urban Stormwater Management Systems, New York, NY)

Manning's Roughness n for Overland Flow

Surface	n	
Smooth asphalt	0.011	
Smooth concrete	0.012	
Ordinary concrete lining	0.013	
Good wood	0.014	
Brick with cement mortar	0.014	
Vitrified clay	0.015	
Cast iron	0.015	
Corrugated metal pipes	0.024	
Cement rubble surface	0.024	
Fallow soils (no residue)	0.05	
Cultivated soils		
Residue cover < 20%	0.06	
Residue cover > 20%	0.17	
Range (natural)	0.13	
Grass		
Short, prarie	0.15	
Dense	0.24	
Bermuda grass	0.41	
Woods		
Light underbrush	0.40	
Dense underbrush	0.80	

Source: McCuen, R. et al. (1996), *Hydrology*, FHWA-SA-96-067, Federal Highway Administration, Washington, DC

Subcatchments

- Infiltration Method
 - Green-Ampt

Characteristics of Various Soils

Soil Texture Class	K	Ψ	\$	FC	WP
Sand	4.74	1.93	0.437	0.062	0.024
Loamy Sand	1.18	2.40	0.437	0.105	0.047
Sandy Loam	0.43	4.33	0.453	0.190	0.085
Loam	0.13	3.50	0.463	0.232	0.116
Silt Loam	0.26	6.69	0.501	0.284	0.135
Sandy Clay Loam	0.06	8.66	0.398	0.244	0.136
Clay Loam	0.04	8.27	0.464	0.310	0.187
Silty Clay Loam	0.04	10.63	0.471	0.342	0.210
Sandy Clay	0.02	9.45	0.430	0.321	0.221
Silty Clay	0.02	11.42	0.479	0.371	0.251
Clay	0.01	12.60	0.475	0.378	0.265

K = hydraulic conductivity, in/hr

- porosity, fraction
- FC = field capacity, fraction

WP= wilting point, fraction

Source: Rawls, W.J. et al., (1983). J. Hyd. Engr., 109:1316.

Model Results Check

- Model for Problem Locations & Relative Magnitude
- Further Calibration
- July 22, 2017 Historical Rainfall Data
 - 4.14" in 24 hours
- ♦ ISWS Bulletin 70 NE Sectional Data
 - 4.47" in 24 hours = 10-year event.

Model Results Check

♦ July 22, 2017: 10-Year 24-Hour Storm Event

Proposed Conditions

- ♦ Identified Key Problem Areas within Model
 - Sandhurst
 - Fieldcrest
 - Downtown Storm Sewer System
- Confirm Investigation Areas with City
- 10 Year Design Capacity for Storm Sewers
- 100 Year Design Capacity for Large Overflow/Flooding Concerns

Proposed Conditions

- Model Various Alternatives
 - Increase Storm Sewer Sizes
 - Additional Storm Sewers
 - Regional Detention
- Alternatives to Meet City Expectations
- Concept Cost Estimates
- System Wide Improvements Allow for Capacity to Address Localized Problems
 - Local Drainage Relief Concept

Sandhurst

52 Wheeler Road, Sugar Grove, IL 60554 ~ (630) 466-6700 tel ~ (630) 466-6701 fax ~ www.eeiweb.com

Sandhurst

WHITETAIL LN SANDHURST DR

ROAD

CLOSE

<u>Cause</u>

- ±89 Acres Tributary
- No Depressional Storage
- Un-detained Flow Into Sandhurst

52 Wheeler Road, Sugar Grove, IL 60554 ~ (630) 466-6700 tel ~ (630) 466-6701 fax ~ www.eeiweb.com

Sandhurst

Fieldcrest

52 Wheeler Road, Sugar Grove, IL 60554 ~ (630) 466-6700 tel ~ (630) 466-6701 fax ~ www.eeiweb.com

Fieldcrest

Fieldcrest

Downtown Storm Sewer System

52 Wheeler Road, Sugar Grove, IL 60554 ~ (630) 466-6700 tel ~ (630) 466-6701 fax ~ www.eeiweb.com

Downtown Storm Sewer System Design Storm Capacity

52 Wheeler Road, Sugar Grove, IL 60554 ~ (630) 466-6700 tel ~ (630) 466-6701 fax ~ www.eeiweb.com

6th Street Improvements

2nd Street Improvements

YEARS Elect

Investigation Areas: Causes & Solutions

Storm Sewer Design Storm Capacity Summary

Results & Lessons Learned

- Study Results Meet Project Goals
 - Alternatives for Key Problems Areas
 - Scope of Overall Improvements
 - Scope of Overall Costs
 - Identify Future Study Needs
 - Roadmap for Implementation

Results & Lessons Learned

- Future Use of Model
 - Base Model for Design of Construction Projects
 - Large Scale Projects
 - Neighborhood Drainage Concerns
 - Planning Tool for Future Development
 - Green Infrastructure

Results & Lessons Learned

- ♦ Keys to Modeling with Limited Resources
 - Take Advantage of Existing Resources
 - Customize Modeling Approach to Available Info
 - Opportunities for Shared Effort Sanitary Study
 - Level of Detail Required to Meet Project Goals
 - Test Global Assumptions
 - Communication

Q&A

Timothy N. Paulson, P.E., CFM

Senior Project Manager Engineering Enterprises, Inc. tpaulson@eeiweb.com (630) 466-6700

Tyler A. Meyer, E.I., CFM

Project Engineer Engineering Enterprises, Inc. <u>tmeyer@eeiweb.com</u> (630) 466-6700

NDWICI