McHenry County Stormwater Management Ordinance

Future BMP Requirements

Cory Horton PE, CFM, CPESC Chief Stormwater Engineer

What's new?????

Not much.....YET..... What will be new????? More BMPs and Infiltration

Terminology – Used almost interchangeably but it is not the same.....

Infiltration Runoff Volume Reduction/Stay On

Why??

The County Comprehensive Stormwater Management Plan (1996)

- Limiting post development runoff to predevelopment volumes and rates
- Encourage infiltration where groundwater pollution will not result
- Protecting water quality

The County Groundwater Resources Management Plan

- Use stormwater best management practices that promote infiltration and treatment to the maximum extent practical
- Utilize Sensitive Aquifer Recharge Areas Map (SARA)

NPDES Requirements

• Develop and implement strategies that will reduce the discharge of pollutants, the volume and velocity of storm water flow to the maximum extent practicable

How will the new requirements be implemented and regulated?

- Annual yield based approach
- Limit post-development yield for the entire site
- Standardized spreadsheet tool for determining yield based on landuse/BMPs/soil type
- Required at detention threshold

Brief overview of spreadsheet tool

Lets take a look!!!!

YIELD FACTORS FOR DESIGN

	Hyd	drologic Soil (Group	
	A/B	с	D	_
IMPERVIOUS AREAS				
Hydraulically Connected Impervious	0.9	0.9	0.9	NIPC HSPF modeling and DuPage County TMDLs
Flat Roofs	0.79	0.79	0.79	Pitt "Small Storm Hydrology"
Pitched Roofs	0.95	0.95	0.95	
Large Impervious Areas	0.97	0.97	0.97	
PERVIOUS AREAS				
Graded Lawn	0.1	0.2	0.3	Mueller and Thompson, AWRA, 2009
Pitt Factors (0.6 inch rainfall)	0.1	0.19		Pitt "Small Storm Hydrology"
Tilled or Undisturbed Lawn	0.02	0.03	0.1	Mueller and Thompson, AWRA, 2009
Pitt Factors (0.6 inch rainfall)	0.02	0.19		Pitt "Small Storm Hydrology"
Native Vegetation	0.01	0.02	0.07	K.R. Brye, 1999
Wetland	0.1	0.15	0.2	Kadlec, <u>Treatment Wetlands</u>
Forest	0.02	0.04	0.05	CWP, 2008, The Runoff Reduction Method
BMPs				
Rain Garden	0.05	0.1	0.15	Mueller and Thompson, AWRA, 2009
Grassed Swale	0.1	0.2	0.3	Mueller and Thompson, AWRA, 2009
Wetland Detention	0.7	0.7	0.7	Kadlec, <u>Treatment Wetlands</u>
Wet Detention	0.9	0.9	0.9	CWP, 2008, The Runoff Reduction Method
Dry Detention	0.7	0.8	0.8	Madison
Permeable Pavement (2" live storage, not underdrained)	0.1	0.1	0.1	From studies cited in AWRA Damodaram
Permeable Pavement (2" live storage, underdrained)	0.7	0.75	0.8	From studies cited in AWRA Damodaram
Green Roof (1" live storage)	0.2	0.2	0.2	Mueller and Thompson, AWRA, 2009
DISCONNECTION OF IMPERVIOUS AREAS				
(applied to both impervious and pervious areas)				Mueller and Thompson, AWRA, 2009
1:1 (impervious:pervious area ratio)	0.04	0.09	0.23	
2:1	0.07	0.15	0.33	
5:1	0.15	0.31	0.48	
10:1	0.3	0.48	0.61	
INFILTRATION				
10:1 or less	0.01	NA	NA	

RESIDENTIAL EXAMPLE

Ra	infall	(in)	
		· · · · /	

Single Family Residential

Allowable Yield (in)

Size (acres)

1/5 acre lots - 40% Impervious

Urban Section

Wet Detention with Native Sideslopes

C HSG Soils

Current Design						
			Surface Runoff	Annual		
	Percent	Area (ac)	Yield Factor	Yield (in)		
Detention	10%	4	0.9	30.6	122.4	
Native Sideslopes	5%	2	0.02	0.68	1.36	
нсі	38%	15	0.9	30.6	459	
Graded Lawn	48%	19	0.2	6.8	129.2	
		40			711.96	
Total Vield (in)					17.80	Too High

34

12

40

Deep Till, Wetland Detention, Disconnect Impervious, Wetland Detention Buffer

			Surface Runoff	Annual		
	Percent	Area (ac)	Yield Factor	Yield (in)		
Wetland Detention	10%	4	0.7	23.8	95.2	
Native Detention Buffer	5%	2	0.02	0.68	1.36	
HCI	15%	6	0.9	30.6	183.6	
Undisturbed/Tilled Lawn	35%	14	0.03	1.02	14.28	
Disconnected Impervious (2:1)	23%	9	0.15	5.1	45.9	
Lawn for Disconnected Impervious	13%	5	0.15	5.1	25.5	
		40			365.84	
Total Yield (in)					9.15	OK

What are the desired goals?

- Maintain runoff volume from entire site
- Protect water quality (both ground and surface)
- Allow flexibility in site design
- Create robust and redundant practices
- Allow credit for "good site" practices (such as native landscaping, soil restoration, and impervious disconnection

Specifics yet to be resolved

- Yield and practice values
- Level of field investigation required
- Protection of groundwater quality
- Certain land uses
- Maintenance requirements
- Deed restrictions
- Fee in lieu

Cory Horton, P.E., CFM, CPESC – Chief Stormwater Engineer

McHenry County Department of Planning and Development 2200 North Seminary Avenue – Woodstock, Illinois 60098 Phone: 815.334.4560 Fax: 815.337.3720 clhorton@co.mchenry.il.us

