## Explicit Simulation of Green Infrastructure for Flood Control Using Two-Dimensional Surface Routing



Image: US EPA





## **5 MWRD Stormwater Master Plans**



METROPOLITAN WATER RECLAMATION DISTRICT OF GREATER CHICAGO



#### 1. Study Areas

- One per Council of Government (4)
- One in City of Chicago

#### 2. Purpose

- Investigate urban flooding issues
- Evaluate conceptual solutions, especially green-gray infrastructure
- Develop community-based and supported plans to address local flooding

#### MWRD STORMWATER MASTERPLAN STUDY AREAS



JRW



#### Main goal: estimate improvements necessary to mitigate flooding to the 100 year level

- First on public land,
- Then if necessary, private land
- Gl investigated as a major component of this work
  - 4th reservoir : Storing stormwater on private land, all contributing to the solution

#### Problem evaluation:

Where is it flooding: 311 calls, models, surveys and public outreach

#### Solutions evaluation: modeling, cost-estimating, master planning

Optimatics: quickly evaluating many combinations of solutions

## Geosyntec is the prime consultant managing this work, other consultants for other master plans



## **Study Components, Modeling Gl**

#### Study is investigating green infrastructure at a planning/conceptual level

Optimized combinations of gray and green infrastructure



#### Typically modeled with a broad approach in the past

- Gross adjustment of curve number
- Blanket adjustment of initial abstractions
- Surface storage at a loading node
- $\succ$  Could we do better? Explicitly model the GI elements  $\rightarrow$  MWH

JRW



#### Integrated Catchment Modeling

- Platform for simulating hydraulically linked urban and riverine catchments
- Includes all sewer modeling functionality with added ability to simulate overland flows across a 2-D surface

#### ICM can simulate direct-to-mesh rainfall

Rainfall applied directly, then concentrates and finds its own flow path

#### Experimental study

- Explicitly modeling each individual GI installation
- Sheet or shallow concentrated flow vs. non-uniform surface routing

#### Goal: To investigate the ability of ICM to simulate GI explicitly





## Hydrology of Study Area

#### **Coarse Trunk Sewer Hydrology**

#### **Detailed ICM Hydrology**



- Network Refinement
  1% variance at outlets
- Adding detail to sewer network allows inflows to sewer to be more evenly distributed



|                | Outlet   | Hans Blvd. | Isaac Ave. |
|----------------|----------|------------|------------|
|                | Diameter | 6.5-ft     | 3-ft       |
| Volume<br>(MG) | CS       | 9.43       | 1.35       |
|                | ICM      | 9.43       | 1.35       |
|                | Variance | -0.05%     | -0.03%     |
| Peak           | CS       | 150        | 18.0       |
| Flow           | ICM      | 149        | 17.8       |
| (cfs)          | Variance | -0.35%     | -1.2%      |

н



#### **Surface Hydraulics**

- Sources
  - High ground
- Pathways
  - Roadways
  - Surface slope
- Sinks
  - Ponding areas
  - Sewer system





#### **Ground Surface – TIN Creation**





## **Bioretention / Permeable Pavement**





## **Cisterns / Green or Blue Roofs**



| Туре                       | Green<br>Roof                   | Cistern |
|----------------------------|---------------------------------|---------|
| Ponded<br>Storage<br>Depth | n/a                             | n/a     |
| Infiltration<br>Capacity   | > Peak<br>Rainfall<br>Intensity | n/a     |
| Porosity                   | 30%                             | n/a     |

Stantec

MWH port of





## **Optimized Green Infrastructure Scenario**

#### Level of implementation optimized for sewershed Square feet or storage volume/land use type/subcatchment





## **5-Year Max Ponding Depth - Existing**







## 5-Year Max Ponding Depth – Optimized GI







Integrated catchment modeling can be used to explicitly model GI elements for a realistic evaluation of their role in the overall drainage system

- Heavily surcharged target GI projects
- Surcharging reduced evenly distribute GI projects
- Effectiveness of each type of GI varies with level of surcharge
- GI has a limited benefit to surface flooding with a surcharged collection system
- GI should be part of a solution integrated with grey infrastructure





## **Opportunities for Future Investigation**

#### Real Data Validation

Simulate historical storms and validate flooding extents to photos or anecdotal evidence of flooding.

#### Extension of Model Duration

A 5-hour duration was simulated to capture event peaks within sewer system. Longer duration simulations could be run to understand the effects of long-term storage recovery and predict the ultimate volume of runoff

#### Infiltration

- Future studies could assess the effect of infiltration on modeling results and determine a realistic value for the existing ground surface.
- Detailed Inlet Network/Mesh Size refinement
  - Inlet capacity was concentrated at manholes in this study. Inclusion of all catch basins, inlets, and leads in the network to model inlet capacity would add more detail.





## **Study Applications**

- District message : 4<sup>th</sup> reservoir, "Recovering Resources, Transforming Water"
- We can use these results and modeling methods for future Stormwater projects
- After the study, we can better understand the impact of GI on flood reduction
  - "first flush" contains contaminants, but also reduces rainfall depth for secondary systems
  - Majority of storms in a year are under 1.5" and this is easily captured by GI (ref: EPA, Dr. Krishna Pagilla's presentaiton at IWEA)
  - So it does reduce the impact of stormwater on combined sewer systems and our reclamation plants
  - Some areas give better opportunities than others, so we can evaluate and locate GI in the most effective areas
- Better understand the impact of implementing GI on a neighborhood scale

**JRW & NS** 





# Questions welcome!



Nicholas J Stepina, PE Civil/Hydraulic Engineer MWH/Stantec Water 312.831.3090 nicholas.stepina@stantec.com John Watson, PE, CFM Associate Civil Engineer MWRD/Stormwater/GI 312.751.3263 John.Watson@mwrd.org