Climate Adjusted Rainfall

Hydrologic Design for Illinois' Future

Loren Wobig, P.E., CFM
Wes Cattoor, P.E., CFM

An Examination of Bulletin 70

*Background
*Limitations
*Adjusting Rainfall Quantities

* Does climate change have significant impact?
*Updating Bulletin 70
* Implementing the update

Bulletin 70 Background

*Published in 1988, revised in 1989
*61 precipitation stations sampled
*83-year record (1901-1983)

* Included climate trends
*Provides a static result

Shortcoming for design

*Last 33 years of data is not included
*Should be designed for full project life?

* Bulletin 70 data year midpoint ~ 1942
* $50 y r$ Design life $=2067$
* 125-years difference (1942-2067)

Bulletin 70 Climate Trends

Table 1. Ratios of 1941-1980 to 1901-1940 24-Hour Maximum Rainfall Amounts for Selected Recurrence Intervals in NWS Climatic Sections of Illinois

Recurrence interval	Average ratio for given recurrence interval									
(yrs)	NW	NE	W	c	E	w $\boldsymbol{s} \boldsymbol{w}$	ESE	SW	$S E$	
2	1.12	1.12	1.07	1.08	1.04	1.09	0.98	0.96	0.95	
5	1.13	1.16	1.07	1.09	1.06	1.11	0.96	0.97	0.95	
10	1.14	1.16	1.07	1.06	1.03	1.14	0.98	0.99	1.00	
25	1.17	1.20	1.01	1.02	1.04	1.11	1.05	0.99	1.04	
Mean	1.14	1.16	1.06	1.06	1.04	1.11	0.99	0.98	0.98	
*1901-1940 VS. 1941-1980										
* Up to 20\% increase northern \\|linois										
* Up to 5% decrease in southern Illinois										

Figure 3. Illinois climatic sections adopted by the National Weather Service

Adjusting for Today's Project

* Project in Roanoke, IL for HUD NDRC
* Central region (CD 4)
* 24 hr critical duration
*50-year project design life - 2067
* Adjust for climate change with best available data
* Utilized regional annual rainfall trend data
* Assume total annual rainfall trends = frequency event changes

Bulletin 70 Climate Trends

*Adjustment ratios gave more weight to latter 40 year period

Table 9. Adjustment Factors for Climatic Trend by Section and Storm Period

Avemge ratio for given storm duration in each section

Climatic section	24 hrs	48 hrs	72 hrs	5 days	10 days	Combiried
	1.06	1.05	1.06	1.04	1.04	1.05
Northwest	1.07	1.04	1.05	1.03	1.02	1.04
Northeast	1.05	1.03	1.05	1.05	1.05	1.05
West	1.02	1.03	1.04	1.03	1.03	1.03
Central	1.02	1.04	1.05	1.04	1.04	1.04
East	1.04	1.04	1.05	1.01	1.01	1.03
West Southwest	0.99	0.99	0.99	1.01	1.01	1.00
East Southeast	0.98	0.98	0.98	0.99	0.99	0.98
Southwest	0.99	0.98	0.98	1.00	1.00	0.99
Southeast	0.99	0.98	0.98	1.00	1.00	0.99

Adjusting for Today's Project

	Equiv. Year	Annual Rainfall	\% inc.	100yr	50yr	25yr	10yr	5 yr	2 yr	1 yr
Unadjusted Data	1942		-1.96\%							
Published data			0.00\%	6.92	6.08	5.32	4.45	3.76	3.02	2.52

Adjusting for Today's Project

	Equiv. Year	Annual Rainfall	\% inc.	100yr	50yr	25yr	10yr	5 yr	2 yr	1 yr
Unadjusted Data	1942		-1.96\%	6.78	5.96	5.22	4.36	3.69	2.96	2.47
Published data			0.00\%	6.92	6.08	5.32	4.45	3.76	3.02	2.52
Compute Pre-adjusted										

Utilized regional annual rainfall trend data

* Source: NOAA National Centers for Environmental information, Climate at a Glance: U.S. Time Series, Precipitation, published February 2017, retrieved on February 27, 2017 from http://www.ncdc.noaa.gov/cag/

Precipitation Trend 1901-1983

[^0]
Adjusting for Today's Project

	Equiv. Year	Annual Rainfall	\% inc.	100yr	50yr	25 yr	10yr	5 yr	2 yr	1yr
Unadjusted Data	1942	35.64	$\frac{\text { Mean Ra }}{-1.96 \%}$	$\frac{\text { Ifall }^{2}}{6.78}$	5.96	5.22	4.36	3.69	2.96	2.47
Published data			0.00\%	6.92	6.08	5.32	4.45	3.76	3.02	2.52

Adjusting for Today's Project

	Equiv. Year	Annual Rainfall	\% inc.	100 yr	50yr	25 yr	10yr	5 yr	2 yr	1yr
Unadjusted Data	1942	35.64	-1.96\%	6.78	5.96	5.22	4.36	3.69	2.96	2.47
Published data		36.35	0.00\%	6.92	6.08	5.32	4.45	3.76	3.02	2.52
			2\% Increase							

Adjusting for Today's Project

	Equiv. Year	Annual Rainfall	\% inc.	100yr	50yr	25yr	10yr	5 yr	2 yr	1yr
Unadjusted Data	1942	35.64	-1.96\%	6.78	5.96	5.22	4.36	3.69	2.96	2.47
Published data	1958	36.35	0.00\%	6.92	6.08	5.32	4.45	3.76	3.02	2.52
		0.44"/decade trend								

Adjusting for Today's Project

	Equiv. Year	Annual Rainfall	\% inc.	100yr	50yr	25 yr	10yr	5 yr	2 yr	1yr
Unadjusted Data	1942	35.64	-1.96\%	6.78	5.96	5.22	4.36	3.69	2.96	2.47
Published data	1958	36.35	0.00\%	6.92	6.08	5.32	4.45	3.76	3.02	2.52
Published Date	1989									
Present Dav	2017									
50yr design life	2067									
100yr design life	2117									

Precipitation Trend 1958-2016

Illinojs Climate Division 4, Precipitation, January-December

 Precipitation, published February 2017, retrieved on February 27, 2017 from http://www.ncdc.noaa.gov/cag/

Adjusting for Today's Project

	Equiv. Year	Annual Rainfall	\% inc.	100 yr	50yr	25yr	10yr	5 yr	2yr	1yr
Unadjusted Data	1942	35.64	-1.96\%	6.78	5.96	5.22	4.36	3.69	2.96	2.47
Published data	1958	36.35	0.00\%	6.92	6.08	5.32	4.45	3.76	3.02	2.52
Published Date	1989	38.11								
Present Day	2017	39.70								
50yr design life	2067	42.55								
$100 y r$ design life	2117	45.40								
		$\begin{gathered} \text { 0.57" } \\ \hline \end{gathered}$	/decade							

Adjusting for Today's Project

	Equiv. Year	Annual Rainfall	\% inc.	100yr	50yr	25yr	10yr	5 yr	2 yr	1yr
Unadjusted Data	1942	35.64	-1.96\%	6.78	5.96	5.22	4.36	3.69	2.96	2.47
Published data	1958	36.35	0.00\%	6.92	6.08	5.32	4.45	3.76	3.02	2.52
Published Date	1989	38.11	4.83\%							
Present Day	2017	39.70	9.24\%							
$50 y r$ design life	2067	42.55	17.10\%							
$100 y r$ design life	2117	45.40	24.96\%							

Adjusting for Today's Project

	Equiv. Year	Annual Rainfall	\% inc.	100yr	50yr	25yr	10yr	5 yr	2yr	1 yr
Unadjusted Data	1942	35.64	-1.96\%	6.78	5.96	5.22	4.36	3.69	2.96	2.47
Published data	1958	36.35	0.00\%	6.92	6.08	5.32	4.45	3.76	3.02	2.52
Published Date	1989	38.11	4.83\%	7.25	6.37	5.58	4.66	3.94	3.17	2.64
Present Dav	2017	39.70	9.24\%	7.56	6.64	5.81	4.86	4.11	3.30	2.75
50yr design life	2067	42.55	17.10\%	8.10	7.12	6.23	5.21	4.40	3.54	2.95
100yr design life	2117	45.40	24.96\%	8.64	7.59	6.64	5.56	4.70	3.77	3.15
		Assumes frequency event changes = total annual rainfall trends								

Change Rainfall

Increase in rainfall $=17.1 \%$

Precipitation losses

Peak Runoff

[^1]
Change in WSP

Event	Bul 70	Adj 2065	Diff.
100	715.93	716.97	1.04
50	715.12	716.11	0.99
25	714.24	715.27	1.03
10	713.12	714.10	0.98
5	711.94	713.05	1.11
2	710.61	711.54	0.93
1	709.64	710.48	0.84

Structures Damaged

Value of Damages

HUD / DCEO / IDNR / ISWS

Partnership

*2 Phases of work based on:

* HUD/DCEO: Funding (Reallocated Hurricane IKE funds)
* University of Illinois: Illinois State Water Survey: Work
* IDNR, Office of Water Resources: Project Oversight
*IDNR, Office of Water Resources Goals:
* Update the design storm rainfall analysis in Bulletin 70 (Huff and Angel, 1989) for Illinois;
* Preparation of design storm tables commonly used for; Infrastructure design, flood studies, mapping, and regulation;
* Utilize current technology to estimate future condition (50-yr) events to reflect climate change conditions for resiliency
* Phase 1 completed by end of 2017
* Phase 2 completed by end of 2018

Bulletin 70 Update - Phase 1

*Rain gages throughout Illinois and bordering states will be used to prepare extreme rainfall event data.
*Historical rainfall data, ranging from hourly to daily, from the National Centers for Environmental Information (NCEI) (formerly National Climate Data Center/NCDC) will be used
*Cook County Precipitation Network(CCPN) will be considered

* 10 regions defined in Bulletin 70 will be utilized
* Base Report to include
*2-, 5-, 10-, 25 -, 50 -, 100 - and 500 -year recurrence intervals
*1-, 2-, 3-, 6-, 12-, 18-, 24-, 48- and 72-hour rainfall durations
*Revised report to be releaseß̈ Dec 31, 2017

Bulletin 70 Update - Phase

*The following checks will be performed upon the rainfall data:

Exploratory data analysis, e.g. plot the annual maximum series (AMS) data for each gage, trends and outliers.

Combining two or more stations/missing data

Determine significant spatial correlations among the gages

Discordancy and heterogeneity measures from the L-Moments software to select stations for analysis (ask U of I)

Other tests and analyses, depending on the above steps

Bulletin 70 Update - Phase 2

*Phase 2: Future Conditions

* Scope of work being developed for Phase 2
* Future rainfall data will be forecasted to 10-year and 100-year frequency for 2050 and 2100;
* Not a trend analysis - Hindsight look at best performing past prediction models.
*Similar work already being performed in Cook County and for the Des Plaines River watershed

Bulletin 70 Update Phase 1 Timeline

March Project Start
$\begin{array}{lllllll}11 & 12 & 13 & 14 & 15 & 16 & 14 \\ 18 & 19 & 20 & 21 & 22 & 23 & 24\end{array}$
$\begin{array}{llll}25 & 26 & 27 \quad 28 \quad 29 \quad 30\end{array}$

June
July
July
November

December
December

Quality controlled, rainfall data from all gages
Data sets selected for statistical frequency analyses
Maps comparing trends across different regions
Tables for each gage for noted-year recurrence intervals and for various-hour rainfall durations, using the 10 regions defined in Bulletin 70 completed

Report in a pdf format for internal and external review
Phase 1 Final Report pelease.

Implementing the Update

* Preparation of design storm tables commonly used for:
* Infrastructure Design,
* Flood studies,
* Mapping, and
* Regulatory Permit Applications.

[^0]: * Source: NOAA National Centers for Environmental information, Climate at a Glance: U.S. Time Series, Precipitation, published February 2017, retrieved on February 27, 2017 from http://www.ncdc.noaa.gov/cag/

[^1]: Watershed $=12.33 \mathrm{mi}^{2}$
 *Transform Method - Clark Unit Hydrograph

