#### **IAFSM 2017**

Performing a Desktop Analysis to Justify Funding a

SUSTAINABLE STORM WATER ASSET MANAGEMENT PROGRAM

Crawford, Murphy & Tilly

Tim Sumner, PE, CFM, CSM March 8, 2017

### STORM WATER MANAGEMENT (SWM) SYSTEM CHALLENGES



- Municipal infrastructure is expensive to own, operate and maintain
- Evident by the failing assets, because each asset has a limited service life
- Insufficient revenue to repair, maintain, renew and improve
- ASCE 2013 National Infrastructure Report Card(1): cumulative grade is D+ (i.e., poor, at risk)

### THE BIG QUESTION



# Is the storm water management challenge as big as a house or a breadbox?

### WHAT IS ASSET MANAGEMENT FOR SWM SYSTEMS?<sup>(2)</sup>

An integrated set of processes to minimize the life-cycle costs of SWM assets, at an acceptable level of risk, while continuously delivering the intended function, or Level of Service (LOS).



LOS: a qualitative measure of performance based on specific criteria. <sup>(3)</sup>

## BENEFITS OF ASSET MANAGEMENT <sup>(3)</sup>

- Forces asset inventory
- Improved Process for Decision-Making (data driven decisions)
- Consistent criteria for making decisions and balancing competing interests
- Minimizes long-term costs of system operation and maintenance
- Defines acceptable levels of service
- Incorporate Sustainability goals
- Establishes roles, goals and metrics that focus and motivate the organization toward more cost-effective operation

### CHALLENGES OF ASSET MANAGEMENT

If customer LOS expectations are not met because of frequent system failures or lack of adequate performance, complaints may lead to undesirable attention or regulatory action. <sup>(2)</sup>



- LOS Examples:
  - No illicit discharges
  - BMPs absorbing first 1" of runoff
  - Cleaning storm inlets annually

### So, where to start?

### DEVELOPING AN ASSET MANAGEMENT PROGRAM

#### **CONVENTIONAL METHOD:**

- Inventory assets
- Assign age
- Define service lives
- Perform condition assessment
- Build GIS
- Assign replacement value
- Document O&M costs
- Link GIS and database
  management program



#### **DESKTOP ANALYSIS:**

- An approximate method to estimate sewer system needs in the absence of a sophisticated database management program.
- Use the data and resources available

### OTHER ASSET MANAGEMENT APPROACHES

- Desktop Analysis method is very approximate (starting point)
- Asset Management Spreadsheets (basic)
- CUPSS (Check Up Program for Small Systems) by USEPA
- More sophisticated software available to implement asset management (not all inclusive):
  - AssetWorks EAM
  - Cititech
  - Cityworks
  - PubWorks



### VALUE OF THE DESKTOP ANALYSIS

S

- Better defines the magnitude of the challenge
- Communicates annual need/cost to maintain, renew and improve the SWM assets
- Quantifies the SWM assets / identify gaps
- Helps with data collection, condition assessment, system valuation, planning and implementation
- Detailed Information = Better defined planning steps
- Can be applied to other assets: sanitary, water distribution systems, treatment plants, dams, roadways, etc.

### DESKTOP ANALYSIS: SIX STRATEGIC PLANNING STEPS



\*This is an approximation to produce a "big picture" estimate that relies on available SWM data and some basic assumptions. (4)

### CASE STUDY FOR SUSTAINABLE ASSET MANAGEMENT



City of Hamilton, Ontario Population ~ 520,000 Area ~ 431 square miles Density ~ 1,205/square mile Length of Sewer ~ 1,553 miles



#### What do we have for assets and where to find it?

- Information to look for:
  - Length, size, number, age, depth, materials for sewers, manholes, inlets, pump stations, force mains, ponds, BMPs and other assets
- Sources: GIS, paper maps, construction plans, record drawings, reports, investigations and notes
- If needed, estimate pipe length and manholes using service population:
  1 mile sewer serves 175 residents, 1 manhole / 300' + 2 inlets
- Import / enter into spreadsheet for tabulation and analysis



# 2

#### What are the assets worth?



- Estimate value of replacing entire system in todays dollars
- Develop unit price summaries for replacing:
  - Sewers & culverts with new pipe based on size
  - SW pumping stations based on capacity
  - SW force mains with new pipe based on size
  - BMPs: ponds, bioswales, infiltration basins based
    on volume
- Include construction, engineering
  and contingencies

#### What are the condition of the assets?



3

- Characterize condition of system using age as an indicator
- Without detailed age records, use population growth from US Census Bureau per decade
- Assumption: assets built to keep pace with population growth
- Total length of sewer allocated by decade based on % of population growth
- Guideline: no brick sewers after 1910, PVC started in 1980s

#### What do we need to do to the assets?

BEFORE AFTER



- Determine minor and major maintenance, rehabilitation and replacement costs for system
  - Minor maintenance: cleaning and televising the system
  - Major maintenance: performing point repairs planned & unplanned
  - **Rehabilitation:** specific point in service life where asset requires renewal to extend the service life
  - Replacement: when asset reaches the end of service life it is replaced

#### When do we need to take action?



- Assign expected service lives
- Allocate sewer size and length for each decade of existence to assign sewer age
- Decide dividing point when sewer will be replaced vs. rehabilitated
- Totalize sewer lengths and sizes for each decade, identifying replacement or rehabilitation
- Identify desired average sewer age to maintain (e.g., 40 years)

#### How much will those actions cost?

6



| Estimate the cost of                                                     | Example: City of Hamilton (no historical data)                                                                   |  |  |  |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|--|--|
| Annual Minor Maintenance<br>(clean & TV)                                 | Use 0.5% of value of the assets                                                                                  |  |  |  |
| Annual Major Maintenance<br>(point repairs)                              | Use 2% of the value of assets                                                                                    |  |  |  |
| One-time Rehabilitate Assets<br>(lining)                                 | Assumed 75% of system replacement value, ¾ of service life<br>*Circumstances may reveal different metrics needed |  |  |  |
| One-time Replace Assets                                                  | Assumed 100% of replacement value                                                                                |  |  |  |
| Combine component costs to develop an overall cost to sustain the system |                                                                                                                  |  |  |  |

### CONCEPT APPLICATION FOR SMALL SYSTEM

- Small MS4 community in need of a program to fund SWM
- Limited records available
- Must start somewhere

| System Component           | Storm Water System  |
|----------------------------|---------------------|
| Total Length, Miles        | ~8                  |
| Pipe Size Range,<br>Inches | 12 - 36             |
| Pipe Materials             | Concrete, Clay, CMP |
| Manholes                   | ~130                |
| Inlets                     | ~215                |
| Pumping Stations           | 0                   |
| Detention Ponds            | 14                  |

#### CONCEPT APPLICATION FOR SMALL SYSTEM: RISK SCORE CALCULATION = LOF X COF

| Decade      | Pipe<br>Age | LoF<br>Factor | Pipe<br>Diameter | CoF Factor |   |
|-------------|-------------|---------------|------------------|------------|---|
| 1950 – 1960 | 58 - 67     | 6             | Less than 8"     | 1          | ( |
| 1960 – 1969 | 48 – 57     | 5             | ≥8'' - <10''     | 2          |   |
| 1970 –1979  | 38 – 47     | 4             | ≥10″ - <15″      | 3          |   |
| 1980 – 1989 | 28 – 37     | 3             | ≥15″ - <21″      | 4          | ŕ |
| 1990 – 1999 | 18 – 27     | 2             | ≥21″ - <30″      | 5          | - |
| 2000 - 2009 | 0 - 17      | 1             | ≥30″             | 6          |   |

CoF Factor from National Association of Sewer Service Companies (NASSCO) <sup>(3)</sup>

| Risk<br>Score | # of Pipe<br>Segments | Cumulative<br>% | Action  |
|---------------|-----------------------|-----------------|---------|
| 20            | 13                    | 6               | Replace |
| 16            | 10                    | 11              | Replace |
| 15            | 8                     | 15              | Replace |
| 12            | 15                    | 23              | CIPP    |
| 10            | 25                    | 35              | CIPP    |
| 9             | 3                     | 36              | CIPP    |
| 8             | 35                    | 54              | Defer   |
| 6             | 25                    | 66              | Defer   |
| 5             | 26                    | 79              | Defer   |
| 4             | 26                    | 92              | Defer   |
| 3             | 17                    | 100             | Defer   |

### CONCEPT APPLICATION FOR SMALL SYSTEM: ESTIMATE O&M, RENEWAL, REPLACEMENT COSTS

- Storm sewer TV & cleaning:
  - \$1/LF for 8"-18",
  - 2\$/LF for 21"-48",
  - 4\$/LF > 48''
- Inlet & catch basin cleaning:
  - \$75/each, assuming multiple
- Detention pond maintenance:
  - (e.g., weed control, embankment, outlet repairs, sediment removal) – use 0.5% of construction cost <sup>(5)</sup>



#### CONCEPT APPLICATION FOR SMALL SYSTEM: ANNUAL STORM WATER COSTS



### PUTTING THIS INTO PERSPECTIVE



- Relate cost of maintaining SWM system in terms that municipal leaders and the public can understand:
  - · Loss of service / health & safety hazard
  - Critical facility impairment (e.g., hospital)
  - Increased repair cost (reactive)
  - Increased travel costs
  - Inconvenience / disruption
  - Business revenue loss
- We owe it to future generations to start this process, moving from reactive to proactive

### IEPA / ILR40 PERMIT REQUIREMENTS

- For those with NPDES permits; SWM programs
- Six Minimum Control Measures:
  - 1. Public Education & Outreach on Storm Water Impacts
  - 2. Public Involvement / Participation
  - 3. Illicit Discharge Detection and Elimination
  - 4. Construction Site Storm Water Runoff Control
  - 5. Post-Construction Storm Water Management in New Development and Redevelopment
  - 6. Pollution Prevention/Good Housekeeping for Municipal Operations
- ILR40 Permit says develop long term O&M plan for facilities (control measure #5)
- Complying with the permit requires effort and data = staff, equipment and funding
- Desktop analysis is a beginning step to justify staff, equipment and funding (a SW utility?)



### THANK YOU.

# QUESTIONS?

Crawford, Murphy & Tilly

Tim Sumner, PE, CFM, CSM

217.787.8050 tsumner@cmtengr.com

### REFERENCES

- 1. American Society of Civil Engineers (ASCE). <u>National infrastructure report card.</u> Reston, VA. 2013.
- 2. National Association Clean Water Agencies (NACWA) et al., <u>Core attributes of effectively managed wastewater collection systems</u>. Washington, DC. 2007.
- 3. National Association Sewer Service Companies (NASSCO), 2015. <u>Pipeline</u> <u>assessment and certification program (PACP)</u>. Marriotsville, MD.
- 4. R.V. Anderson Associates, Limited. <u>A guide to sustainable asset management</u> for Canadian municipalities. Toronto, Ontario, Canada. 2002.
- 5. US Environmental Protection Agency (USEPA). <u>Costs of urban stormwater</u> <u>control 600/R-02/021</u>. Washington, DC. January 2002.