

Re-evaluating Flood Hazards at Critical Infrastructure along the Mississippi River

Proactive By Design. Our Company Commitment

> March 8, 2017 Illinois Association of Floodplain and Stormwater Managers Springfield, IL

> > Linda M. Hutchins, Hydrologist, P.G., CFM David M. Leone, Hydraulic Engineer, P.E.

> > > GZA GeoEnvironmental, Inc.

BACKGROUND

GEOTECHNICAL ENVIRONMENTAL

CONSTRUCTION

Post-Fukushima Actions

RECOMMENDATIONS FOR ENHANCING REACTOR SAFETY IN THE 21ST CENTURY

GEOTECHNICAL ENVIRONMENTAL

CONSTRUCT

WATER

ECOLOGICAL

Julv 2011

THE NEAR-TERM TASK FORCE REVIEW OF INSIGHTS FROM THE FUKUSHIMA DAI-ICHI ACCIDENT

Page | 3

United States Nuclear Regulatory Commission

Protecting People and the Environment

BACKGROUND

Hydrologic Setting

GEOTECHNICAL

ENVIRONMENTAL

CONSTRUCTIO

BACKGROUND

Flooding may result in loss of property and lives

GEOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL

Critical Infrastructure

widespread impacts:

outages have

CONSTRUCTION

Select Flood Hazard Re-evaluation Sites

1333444

Post-Fukushima Actions

Flood Walk Down:

GEOTECHNICAL ENVIRONMENTA

ECOLOGICA

WATER

Identify <u>existing</u> physical vulnerabilities against <u>existing</u> licensing basis flood (1970s)

Flood Re-Evaluation:

Develop up-to-date estimates of flood elevations using current state-of-practice techniques

Integrated Assessment:

Develop flood protection / mitigation actions to address re-evaluated flood hazard

CONCEPTS

Probable Maximum Flood (PMF): ...resulting from the most severe combination of <u>hydrologic</u> and <u>meteorological</u> conditions that are <u>considered reasonably possible</u>.

<u>Hydrologic</u>: High antecedent flow

<u>Meterologic</u>: Historic high rain

GEOTECHNICAL ENVIRONMENTAL

ECOLOGICAL

Definitions provided in "Hydrologic Engineering Methods For Water Resources Development", Volume 5, USACE, March, 1975. and the "Mississippi River & Tributaries Project" report CONSTRUC

CONCEPTS

Figure provided in "Estimation of Large to Extreme Floods, Volume VI", Australian Rainfall and Runoff, Nathan R.J. and Weinmann, E.M, 2001

WATER

GEOTECHNICAL ENVIRONMENTAL

Methods for estimating the flood

GEOTECHNICAL

ENVIRONMENTA

ECOLOGICA

Use historic flood data, paleohydrology, statistics, Monte Carlo-type/stochastic approaches

- A developing approach to extreme flood estimation, gaining acceptance
- Used for smaller floods, such as 100-year and 500-year return periods
- Requires long term stream gage and other reliable data

CONSTRUCT

Probable Maximum Flood - Steps

GEOTECHNICAL

ENVIRONMENTA

ECOLOGICA

CONSTRUC

WATER

Page | 11

Site Specific

GEOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL

Probable Maximum Precipitation (PMP)

Why:

- Large watersheds
- Orographic effects
- Cool season PMP

How:

- Storm-Based
- Maximization
- Transposition

CONSTRUCT

Antecedent Flow– before the PMP

GEOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL

WATER

• The ground is already wet- not much infiltration loss

PMP Time Series

GEOTECHNICAL ENVIRONMENTAL

Depth-Area Duration Curves

CONSTRUCTIO

WATER

Flood Flows (PMF)

Army Corps of Engineers HEC-HMS Model

Watershed segmented into sub-basins

Rainfall simulated over watershed

Streamflow is simulated at outflow point of each subbasin

Model Calibration-7 to 8 historic storms

GEOTECHNICAL ENVIRONMENTAL

ECOLOGICAL

CONSTRUCTION

Time, days

PMF Hydrograph

GEOTECHNICAL ENVIRONMENTAL

CONSTRUCTION

GEOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL

C7

CONSTRUC

PMF Elevation Development

GEOTECHNICAL ENVIRONMENTAL

ECOLOGICAL

CONSTRUCTIO

Hierarchical Hazard Assessment

GEOTECHNICAL ENVIRONMENTAL

ECOLOGICAL

Figure 2-1. Flowchart Demonstrating the HHA Applied to Flood Hazards from a PMF Event

CONSTRUCTION

Deterministic vs. Probabilistic: Flow

GZN

Flow, cfs

Deterministic vs. Probabilistic: WSE

CONCLUSIONS

• Big challenge calculating a PMF elevation in this region due to:

GEOTECHNICAL ENVIRONMENTAL

ECOLOGICA

CONSTRUC

- Large watershed size
- Controlled riverine system
- Strategies
 - Find alternative methods
 - Use conservative simplifying assumptions

Future Trends

- Probabilistic Analysis
- Risk Informed Decision Making
- Two or Three Dimensional Hydrodynamics

CONSTRUC

WATER

ECOLOGICAL

GEOTECHNICAL ENVIRONMENTAL

Thank You !

Linda M. Hutchins, P.G., CFM

Senior Project Manager, Hydrologist Oak Brook, IL 60523 630-684-4438 linda.hutchins@gza.com David M Leone, P.E. Associate Principal Norwood, MA 02062 781-278-5788 davidm.leone@gza.com

ECOLOGICAL

GEOTECHNICAL ENVIRONMENTAL

Proactive By Design.

CONSTRUC