Illinois Raindrops Keep Falling IAFSM 2024 - Peoria, IL March 13, 2024

Office of Water Resources Resource Management – Statewide Programs

Goals for Today's Presentation

- 1) OWR Map Revision Website Information
- 2) Map Revision Tools FIRMS and FIS
- 3) FEMA Map Change Process
 - a) MT-1 and MT-2 map revisions
- 4) 2024 IDNR-OWR Map Revision Manual
- 5) Thirteen Questions (IAFSM abstract)
- 6) FEMA's Future Flood Risk Data Program 7-minute overview
 - a) Nationwide remapping in "2-Dimensions"
 - b) New concepts: SST floodway challenges probabilistic

Good floodplain management requires accurate flood maps

IDNR – Water Resources – New Website

https://dnr.illinois.gov/waterresources.html

Governor JB Pritzker Illinois.gov Contact IDNR	DNR A to Z Select Language Congle Translate DDE DISCRATE Description Select Language Congle Translate DDE DISCRATE Description Description Description Description Boat/Fish \sigma Outreach/Ed. \sigma Extractive Res. \sigma Law/Safety \sigma Grants/Procurements \sigma
Illinois DNR Vater Resources	Upper half of the opening IDNR screen
	Protecting The Great Lakes Protecting the Great Lakes is vital to millions of people from Illinois and throughout the Midwest who rely on these waterways for their livelihoods. Asian carp eradication measures include increased fish collection, population suppression, biological control efforts and electric barriers. These methods assist in the prevention of Asian carp bypass between the Des Plaines River and the Chicago Sanitary and Ship Canal (CSSC) as well as the Illinois and Michigan Canal and CSSC during flooding.

ILLINOIS

NATURA RESOURCE

IDNR – Water Resources – New Website

https://dnr.illinois.gov/waterresources.html

About OWR - Past & Present

- Mission and Structure
- Programs
- History
- Current and Prior Directors
- Waters and Facilities List
- Contact Water Resources

Resource Management

- Resource Management
- Notice of Draft Administrative Rule Changes
- Permit Programs
- Permits Statewide
- Permit For Water Withdrawal
- Lake Michigan Water Allocation
- Joint Permit Application and Instructions
- Permit F.A.Q.'s
- Permit Application Fees
- Permit Application Fee E-Pay
- Floodplain Management Resources

News

The Flood Record Newsletter

Advertisements for Bids

Stream Conditions

• Summary Table (River Stage)

Stratton Operations Update

Current Flood Map

• Flood Surveillance

Public Waters

Public Notices

- - Publications and GIS Maps
 - Safety At Dams

Capital Programs

- Capital Programs
- Yorkville Dam
- Water Supply

Lower half of the opening screen

Quick Access

- Coastal Management Program
- F.A.Q.'s
- Careers and Recruiting
- Maps (Water Resources-GIS)
- National Flood Insurance Program
- Publications and GIS Maps
- CMS Job Application 100
- So, You Live Behind A Levee
- Flood Preparedness
- Fox River Flood Commission
- State Water Plan Taskforce

Resource Management Tab– Contains the OWR Regulatory Information and **NFIP** Resources

IDNR - Menu Options on Resources Management Page

NE IL Regulatory Program

- Lake Michigan Water Allocation
- Permits Program
- Permit Application Fees
- <u>Chicago Permit Applications</u>
- <u>Bartlett Permit Applications</u>
- <u>Statewide</u>, <u>Regional and General</u> <u>Permits</u>
- <u>Regulatory Programs</u>
- Floodplain Regulations
- Protecting Illinois Waters
- Part 3730 Allocation of Water from Lake Michigan
- Part 3708 Floodway Construction in Northeastern Illinois

Dam & Levee Safety Programs

- <u>Dam Safety Program</u>
- Levee Safety Program
- Guidelines for Dam Applications
- <u>Guidelines & Forms for Dam</u>
 <u>Inspections</u>

Downstate Regulatory Program

- Permits Program
- Permit Application Fees
- Permit Application and Instructions
- Springfield Permit Applications
- <u>Statewide</u>, <u>Regional and General</u> <u>Permits</u>
- <u>Regulatory Programs</u>

Allocation

Lake Michigan Water Allocation

Part 3730 - Lake Michigan Allocation

Public Water Management

Protecting Illinois Waters

- NFIP Program
- <u>The National Flood Insurance</u>
 <u>Program</u>
- Floodplain Maps
- <u>Mitigation</u>
 - Quick Guide to Floodplain
 <u>Management</u>
- <u>Resource Guide for Illinois</u>
- Emergency Management Institute | EMI Courses & Schedules
- ASFM Training & Education

Lake Michigan Water Studies & Mapping

- <u>Statewide Mapping & Studies</u>
 <u>Reviews</u>
- Public Water Management
- Public Waters
 - <u>Guidelines for Projects in Public</u> <u>Waters</u>

- Floodway
 Permitting
- Public Waters
- Lake MI Water Allocation
- Dam Safety
- NFIP Resources
- Mapping and Studies

IDNR- National Flood Insurance Program Tab

Floodplain Maps

FEMA and the State of Illinois have identified floodplains within the state. These floodplain maps are used by communities, planners, lenders, and insurance agents to identify flood risk areas. Floodplain maps of Illinois can be viewed on line at: <u>http://www.illinoisfloodmaps.org/</u>. You can also view floodplain maps at the <u>FEMA Map Service Center</u> searching any address.

On occasion, residents in Illinois will dispute a property's location within a floodplain. FEMA has a process to remove a property from a floodplain. However, before this happens a property owner must provide FEMA with technical or elevation data to prove the property is not at risk of flooding. Information on map changes can be found at: <u>Change Your Flood Zone (LOMA/LOMR)</u>

Link to LOMCs, FIRMS, Flood Insurance Studies, and mapping databases

> The **Map Revision** Process for FEMA and IDNR-OWR

> > explained

Illinois State Water Survey partnership with FEMA to draft new Flood Studies and FIRMS

FEMA Mapping Products

Map Products = Flood Maps (FIRMS) + Study Information (FIS)

Flood Insurance Study

- Download from Map Service Center
- History, study details, datums, profiles, floodway data table, etc.

Floodplain Map

- SFHA = Special Flood Hazard Areas
- Download from NFHL Viewer or Map Service Center

Flood maps - Which floods does FEMA map?

The 1% Annual Chance Flood is the basis for the NFIP program

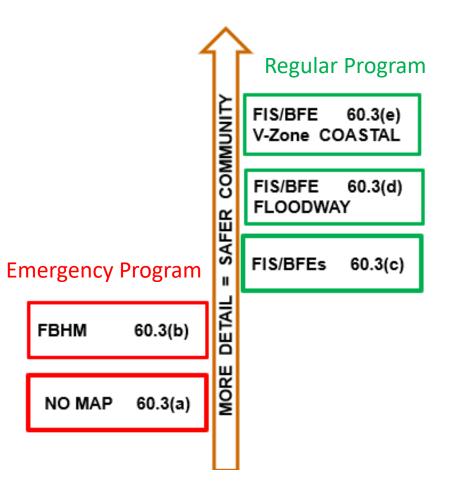
- 1% Annual Chance Flood known as the 100-year flood and the "Base Flood"
- Base Flood Elevation also known as "BFE"
- Flood area, also known as "Special Flood Hazard Area" "SFHA"

Detailed maps show 0.2% annual chance "500-year" flood

FIS profiles typically include:

- 10% Annual Chance (10-year)
- 2% Annual Chance (50-year)
- 1% Annual Chance (100-year)
- 0.2% Annual Chance (500-year)

Newer profiles include the 1% + profile (Demonstrates uncertainty and variability)


Types of Flood Risk Mapped on the FIRM

Type of flood risk shown on FIRM maps:

- Riverine
- Lacustrine (lake)
- Coastal/tidal

Development standards adopted by a community are dependent on the type of risk

As the accuracy of the FIRM gets better, communities are safer.

Flood Maps - Floodplain Detailed Delineations

3 Mapping Elements

- **#1** Floodplain Geometry (topography) Shape and surface of the floodplain
- #2 Flood Discharge Volume/rate (hydrology) How much rain runs off and how fast it collects
- #3 Flood Height Depth/velocity (hydraulics) How does the water move downstream

Topography

Hydrology

Hydraulics

Topography 1st Mapping Element

Cross-sections show how water flows in channels

Channel Geometry are points in a straight line, each point having distance and elevation.

Channel roughness is given by segments called Manning's "n".

Hydrology 2nd Mapping Element

Hydrology = How rainfall runs-off on different land types

- Flood Discharge (CFS flow), cubic feet per second typically
- Flood Frequency (how often), % chance every year 1% = 100 year
- Climatology (Global Warming), total rainfalls are increasing (Bulletin 75)

Calibration = How to verify your computer model with obse

- Computer modeling
- Gaged streams statistical analysis
- Ungaged streams regression equations (USGS StreamStat:
- Coastal storm modeling (Lake Michigan recent modeling)

Hydraulics 3rd Mapping Element

Hydraulics how floodwaters move in:

Lakes and Wetlands store water, releasing overflows Rivers and Creeks water slowly moves down hill / slopes Bridges and Culverts reduced conveyance

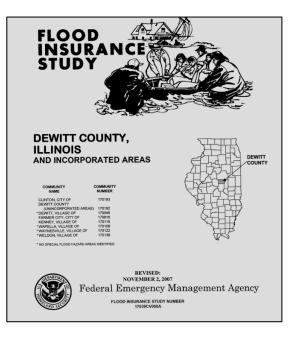
Computer Models (Steady HEC-RAS, Unsteady HEC-RAS

Hydraulic models set floodway limits

Hydraulics 3rd Mapping Element

- Steady Flow Models [River has slope >1%] Step-backwater model (1D HEC-RAS)
- Unsteady Flow Models [River is flat <1%] Sloshing water back-and-forth (2D HEC-RAS)

FEMA has approved list of computer models



Flood Insurance Study (FIS)

- FIS is a report that provides background information used in FIRMS
- The FIS summarizes data such as:

Study summaries and methodology
Certified Discharges Flood (Peak flows)
Lake Stillwater elevations
Waterway flood profile plots 10, 50, 100, and 500 profiles
Floodway Data Tables

 Main goal of the Map Revision Tools is to establish insurance risk zones (SFHA)

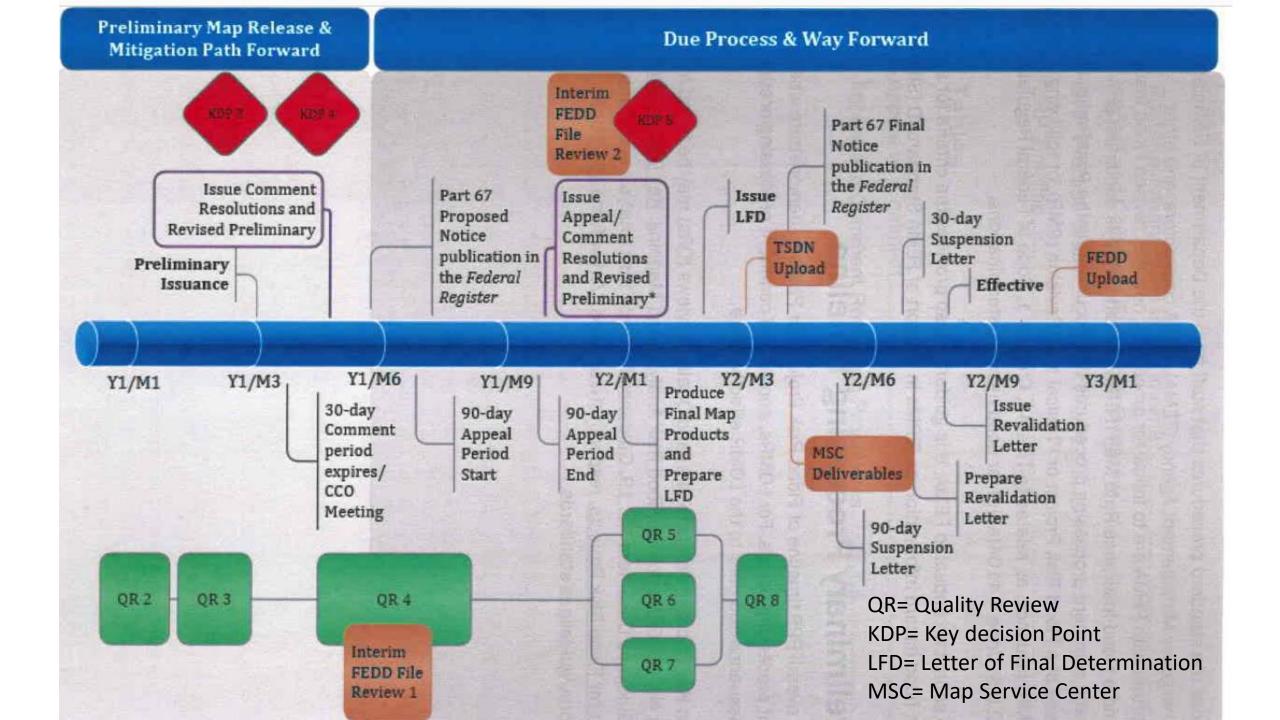
For New Flood Studies What is the FEMA Map Production Process?

FEMA'S Flood Study Process Overview

Once FEMA has selected the mapping contractor the process begins.

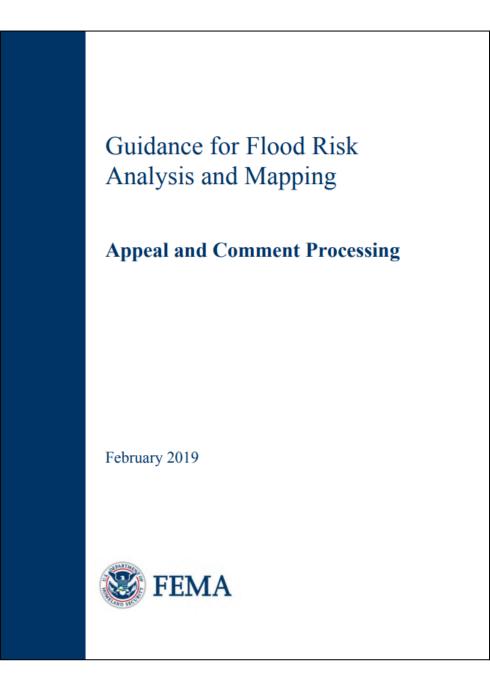
Data collection, model and mapping development

- Community "Time & Cost" Scoping Meeting
- Collect Community floodplain information (Discovery and Flood Risk Review)
- Complete Hydrology / Hydraulic modeling GIS based


Preliminary Mapping and Study Review

- Meet with Community to discuss "Preliminary Map"
- Public meeting (Discuss "Preliminary Map")
- Preliminary Maps -Formal 90-day Appeals period

Final Mapping


- Final maps and FIS are prepared with appeals addressed LFD Issued
- Final Maps Issued- Community adopts maps via an ordinance

Ninety-Day Appeal Period

- Community or individuals may appeal and comment on the proposed flood elevations for the community.
- Property owners or lessees may appeal and comment the **Preliminary FIRM** of the flood insurance study.
- A comment does not require technical data and could be photos
- An **appeal** of the FIRM is based on information that shows the proposed flood hazard areas **are technically wrong**.
- Appeals and comments are not a **protest** of the FIRM based on emotion, politics, or more, ("non-technical").

180-Day Compliance Period or Ordinance Adoption

After appeals have been resolved, FIMA (Federal Insurance & Mitigation Administration) sends community formal notification of final flood elevation determination. Called a Letter of Final Determination "LFD".

 Elevations will become effective six months after the LFD letter is sent.

• Ordinance adopting the new maps and FIS meeting minimum state and federal requirements must be effective by the end of the six months.

Not always so easy to finish new FIRMs.

Levees and other appeals can stall the process for years.

Once the final maps and study are issued the 180-Day clock begins

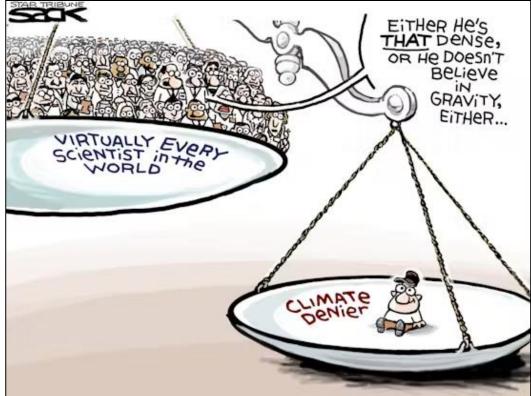
Illinois has a 100% adoption rate by NFIP participating communities

FEMA Map Revision Categories

County-wide Maps

Full restudy and new FIRM maps are issued FEMA Initiated

Must meet FEMA Flood Risk Analysis and Mapping Guidelines (Major updates issued, November 2023)


Physical Map Revisions (PMR)

FEMA or Community Initiated

More complex map change, typically based on a watershed New map panels issued

Localized Map Amendments

LOMCs: LOMA, LOMR-F, and LOMR Property Owner or Community Initiated LOMC = Letter of Map Change

Letters of Map Change (LOMCs)

Amendment (MT-1):

Naturally high ground outside of floodplain Filled flood fringe, no floodway impact Buildings or legally defined area of land No H&H Analysis MT-1 form or MT-EZ submittal

Revision (MT-2):

More complex map change Not usually lot or structure specific Requires H&H analysis MT-2 form submittals

MT-1

LOMA / CLOMA LOMR-F / CLOMR-F LOMR-FW (a LOMA with a Floodway Correction)

MT-2 PMR LOMR Conditional LOMR = CLOMR

CLOMA / CLOMR clarifications

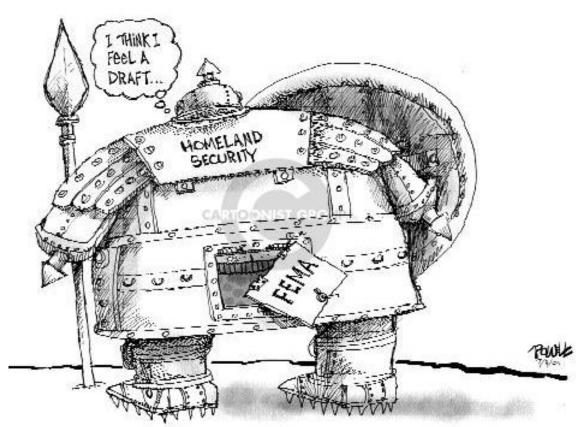
CLOMR does not change FIRM CLOMR has Fees After 6 months past construction, the applicant must submit a LOMR

Obtaining FEMA Flood Study Information

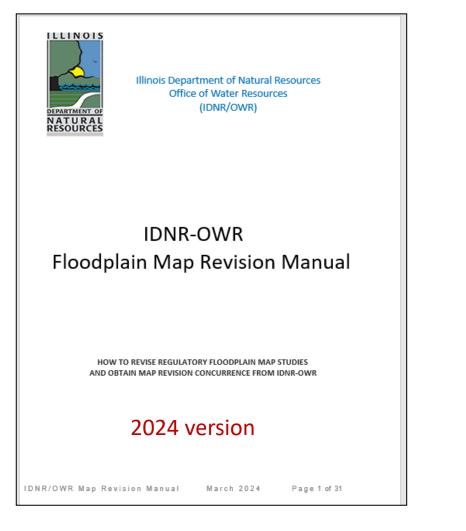
FEMA Flood Map Service Center

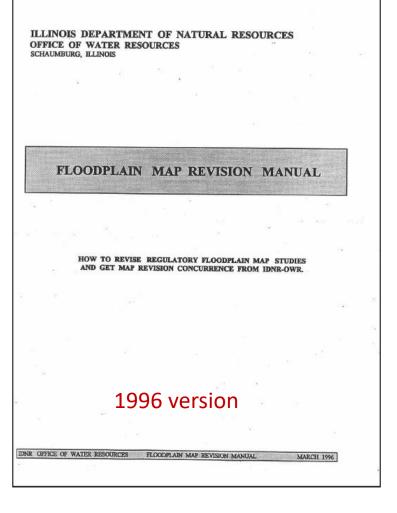
https://msc.fema.gov/portal/home

Download Flood Insurance Studies providing background for FIRM panel data. <u>https://msc.fema.gov/portal/resources/contact</u>


Request digital flood insurance study computer models from past studies.

Coordinated Hazard Assessment and Mapping Program (CHAMP) IllinoisFloodMaps.Org


https://www.isws.illinois.edu/champ


https://www.illinoisfloodmaps.org/destined-dfirms.aspx

Mapping CTP for FEMA. Illinois Flood Maps.org provides details on recently completed and nearly completed FIRM mapping projects.

IDNR-OWR 2024 Map Revision Manual

The 1996 version refers to digital submittals with a "IBM compatible Diskette". No references to internet sites. FYI, Google started in 1998.

IDNR-OWR Overview

- 1) General Overview
 - a. Office of Water Resources (OWR) Floodplain Mapping and Permitting
 - b. National Flood Insurance Program (NFIP) = Regulations, Insurance, and Mapping
 - c. Evolution of FEMA FIRM Maps
 - d. Revising Regulatory FEMA FIRM maps
 - e. Illinois State Water Survey (ISWS) Partnership with FEMA as a CTP
 - f. IDNR-OWR Map Revision Manual
- 2) Definitions
- 3) OWR Regulations and State Statutes

Why Obtain a Map Revision?

- 1) Accommodate New Development
 - a. Use effective Regulatory Study and Map
 - b. Change Effective Study
- 2) Updating Disputed Effective Flood Studies and mapping
 - a. Inadequate Topography
 - b. Future Land Use Considerations
 - c. Public Flood Control Projects

3) Hydrology and Hydraulics (H&H) for Unstudied Watersheds

General Overview Background on FEMA map revision process

General concepts within the IDNR-OWR Map Revision Manual

Why a Map Revision? Reasons for map revision submittals Future land use

considerations and mapping flood control projects

Hydrologic & Hydraulic SUBMITTAL APPROACHES

1) HYDROLOGIC Design Storm Approach

- a. Critical Storm Duration
- b. Huff Rainfall Distributions
- b. SCS Parameters
- d. 2-Dimensional Modeling verses 1-Dimensional Modeling
- HYDRAULICS Defining the Illinois Definition Floodway

 a. 90% Storage verses a Conveyance Floodway
 b. Modeling Restrictive Bridges
- 3) Submittal Check lists
 - a. New or Updated Hydrology
 - b, New and Updated Hydraulics
 - c. Discharge Certification
- 4) Presubmiital Meeting Topics
- 5) Common Submittal Mistakes
- 6) Published Documents and Websites
 - a. Bulletin 70 and 75
 - b. OWR Regulations
 - c. FEMA Guidelines and Standards (November 2023)
 - d. US Army Corps Models and User Manuals

H&H Submittal Approaches

Process of modeling various duration storms to select the peak flows

Define Huff Quartiles 90% Floodway definition Modeling restrictive bridges

Checklists for more complete submittals

Presubmittal topics Common submittal mistakes

Various websites for reference information

Appendices

RAINFALL

A-1 Technique to define Huff Distribution percentages using 7th Order Polynomials

BLANK SUBMITTAL CHARTS

PROCEDURAL FLOWCHARTS B-110 & 100 Year Profile changes(B-2Incremental Floodway Storage(B-3Conveyance, N-Values, and Velocity(B-4Discharge Certification Form(

(Floodway Revision) (Floodway Revision) (Floodway Revision) (Hydrology Revision)

- C-1 Defining the Illinois Regulatory Floodway
 - C-2 OWR Discharge Certification
 - C-3 Correcting Regulatory Hydraulic Models
 - C-4 Changes to Regulatory FIRMS
 - C-5 Sample Public Notice

D-1 More Map Revision Websites FEMA National Flood Hazard Layer Viewer (NFHL) USGS StreamStats Illinois Public Land Survey System FEMA Flood Map Service Center Illinois Elevation Finder Illinois DNR – Office of Water Resources Coordinated Hazard Assessment and Mapping Program IllinoisFloodMaps.Org Appendix A Digital 7th order equation to define Huff quartile distributions for any time step

Appendix B Define parameters used in modeling **Discharge certification form** has locations of flow certifications.

Appendix C Flowcharts for revision submittals

> Appendix D Various useful websites

Flowchart C-4 Revisions to Regulatory Maps

Step 1 Obtain Effective (regulatory) computer model(s)

Contact FEMA Map Service Center at: Contact the Illinois State Water Survey at: If no model is available a) Outreach to OWR, community's county, MWRDGC (in Cook), etc. b) Draft Best Available computer model of the waterway

Step 2 Update the Effective Model with existing topography

This is called the "Modified Effective" model. Include all existing topography with additional cross sections needed to define the Pre-project conditions.

Option 1

<u>Water surface elevations drop (>0.1 ft)</u> resulting from "Modified Existing " model results. Dropping water surface elevations require updated hydrology (Flowchart C-2)

Option 2

<u>Water surface elevations equal or higher</u> than "Modified Existing" model results. New hydrology is not required. **Goto Step 5**

Step 3 Add project into "Modified Existing" model = "With-Project Model"

Option 3

Applicant lowers the water surface elevations resulting from with-project model results. New hydrology is required to update the peak flows. Goto Flowchart C-2

Option 4

The "With-Project" water surface elevations are equal or higher than "Mod-Exist" model results. Goto Step 4

Step 4 Applicant meets all other OWR regulations and policies.

Step 5 OWR concurrence pending completion of Public Notice

Step 6 OWR issues Letter of Concurrence following successful Public Notice

March 2024

Page 28 of 31

IDNR-OWR 2024 Map Revision Manual

Revise Regulatory FIRM maps

Contact FEMA or ISWS to obtain digital models (maybe others?!)

Modified Effective Model (MEM)= Effective Model (EFM) + updated topography

If **MEM WS < EFM WS** then update hydrology

After update Hydrology add in the project = With Project Model (WPM)

If WPM WS < MEM WS make sure hydrology meets IDNR-OWR Bulletin 75 criteria.

If IDNR-OWR agrees w/ model Issue 21 day Public Notice After Public Notice issue Letter of concurrence

	Flowchart C-3	Revising Regu	ulatory Hydraulic Models	
	Effective Study	omits Significant V	Watershed / Channel Characteristics	
	A) 1% chance	flood water surfa	ST Result in either: ace changes by +/- 0.1 feet arges vary by more than 10%	
Step	p 1A Submit Bette	er Topography	Step 1B Add Storage or Restrictive Culve	rt
	n 1 Water surface el Goto Step 3 n 2 Water surface el Goto Step 2 Sut		Option 1 Model the additional storage per the restrictive crossing criteria. Option 2 Should significant changes occur In water surface or flows Goto Step Goto Step	
S	Step 2 Revised H	lydrology model re	equired Use Flowcharts C-1 and C-2	
	channel geometry re	visions. Otherwise,	ated topography or significant restrictive crossings e, the effective peak flows could be used. Future la or developing watersheds.	
Ş	Step 3 OWR agre	es with Model res	sults. Issues a Public Notice (for LOMCs)	

OWR issues a 21 day Public Notice allowing for affected property owners and government Agencies to respond. All comments or concerns should be in writing and technically based. Should a valid concern be received, the Public Notice will be re-issued allowing for another 21-day review period. Public Notice process is required for all designated floodway revisions.

Step 4 OWR issues a Concurrence Letter following successful Public Notice

The OWR Letter of Concurrence is sent to FEMA Region V, Illinois State Water Survey, and the applicant. Any construction in the floodway can not begin until FEMA has issued their final map revision approval.

IDNR-OWR 2024 Map Revision Manual

Updating hydraulic models

Significant flow or water surface (WS) changes Change Topography > change WS? Change flows > +storage or +conveyance

If you lower WS then update hydrology

If IDNR-OWR agrees w/ model Issue 21 day Public Notice After Public Notice issue Letter of concurrence

D-1 Useful Map Revision Websites

FEMA National Flood Hazard Layer Viewer

https://hazards-fema.maps.arcgis.com/apps/webappviewer/index.html?id=8b0adb51996444d4879338b5529aa9cd
Website to access effective FEMA FIRM maps, to determine location of floodway and floodplain limits. These maps are updated at least every 30 days. LOMA and LOMR approvals are also included in the mapping.

USGS StreamStats

https://streamstats.usgs.gov/ss/

Provides regression equation generated peak flood flows for 50 percent to 0.2 percent floods. Generates a report complete with basin delineation overlaid on various available base maps.

Illinois Public Land Survey System

https://prairie-research.maps.arcgis.com/apps/webappviewer/index.html?id=16239dfab62f49e48e692bb93b495fd9 Useful site to determine Section-Township-Range designations on the Joint Application Form

FEMA Flood Map Service Center

https://msc.fema.gov/portal/home Download Flood Insurance Studies providing background for FIRM panel data. https://msc.fema.gov/portal/resources/contact Request digital flood insurance study computer models from past studies. Can also contact the ISWS at

Illinois Elevation Finder <u>https://maps.dnr.illinois.gov/elev/</u> Provides LiDAR digital elevations for site investigations.

Illinois DNR – Office of Water Resources https://dnr.illinois.gov/waterresources.html OWR website providing useful permit and map revision information.

Coordinated Hazard Assessment and Mapping Program

IllinoisFloodMaps.Org

https://www.isws.illinois.edu/champ

https://www.illinoisfloodmaps.org/destined-dfirms.aspx

Mapping CTP for FEMA. Illinois Flood Maps.org provides details on recently completed and nearly completed FIRM mapping projects.

IDNR-OWR 2024 Map Revision Manual

Map Revision Websites

All these websites have valuable available information for Map Revision submittals

A-1 Using 7th Order Polynomials to define Huff Distribution Percentages

			Cum	ulative Ra	infall	
Total (Min)	60	180	360	720	1440
100 Ye	ar	1 HR	3 HR	6 HR	12 HR	24 HR
Rain To	otal	3.6	4.7	5.8	6.3	7.4
Increm	MIN	3	9	18	36	72
9	6 Time	HUFF 1	HUFF 1	HUFF 1	HUFF 2	HUFF 3
	5	0.29	0.38	0.46	0.19	0.22
	10	0.61	0.80	0.99	0.50	0.44
Appendix A	15	1.22	1.60	1.97	0.76	0.67
(Map Revision	20	1.80	2.35	2.90	1.01	0.89
Manual)	25	2.27	2.96	3.65	1.39	1.11
	30	2.56	3.34	4.12	1.83	1.41
	35	2.74	3.57	4.41	2.46	1.70
	40	2.88	3.76	4.64	3.21	2.00
	45	2.99	3.90	4.81	3.91	2.37
	50	3.10	4.04	4.99	4.41	2.81
	55	3.17	4.14	5.10	4.79	3.33
	60	3.24	4.23	5.22	5.10	4.22
	65	3.31	4.32	5.34	5.36	5.18
	70	3.35	4.37	5.39	5.54	5.85
	75	3.42	4.47	5.51	5.73	6.29
	80	3.46	4.51	5.57	5.86	6.59
	85	3.49	4.56	5.63	5.99	6.81
	90	3.53	4.61	5.68	6.11	7.03
	95	3.56	4.65	5.74	6.17	7.18
	100	3.60	4.70	5.80	6.30	7.40
			Cum	ulative Ra	infall	
		3.60	4.70	5.80	6.30	7.40

Fitting Huff percentage numbers to smaller time intervals In order to maintain the Huff distribution curves, it is reasonable to develop an equation that will give you the exact Huff distribution for smaller time intervals.

Two Main Steps

- A) Goto website for the 7th order polynomial equation
- B) Copy the equation into an Excel spreadsheet that has small increments of cumulative storm time.

Step A

Paste published Time and Huff distributions into website

- 1) Cumulative Percent time of storm
- 2) Exact Huff cumulative rainfall for each time value Website below:

http://polynomialregression.drque.net/online.php

Step B

Copy the 7th order polynomial into an excel spreadsheet and have it reference the cumulative incremental storm time step. The value of the huff distribution will be calculated by the polynomial equation. Simple huh?

A-1 Using 7th Order Polynomials to define Huff Distribution Percentages

	Area < 10 SM							Area > 10 SM and < 50 SM								Area >50 and < 400 SM							
HUFF10	Quartile	HUFF 2	Quartile	HUFF	3 Quartil	e HUFF	Quartile	HUFF 1	Quartile	HUFF 2	Quartile	HUFF 3	Quartile	HUFF 4	Quartile	HUFF 1	Quartile	HUFF 2	Quartile		3 Quartil	HUFF 4	I Quarti
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.05	0.16	0.05	0.03	0.05	0.03	0.05	0.02	0.05	0.12	0.05	0.03	0.05	0.02	0.05	0.02	0.05	80.0	0.05	0.02	0.05	0.02	0.05	0.02
0.1	0.33	0.1	0.08	0.1	0.06	0.1	0.05	0.1	0.25	0.1	0.06	0.1	0.05	0.1	0.04	0.1	0.17	0.1	0.04	0.1	0.04	0.1	0.03
0.15	0.43	0.15	0.12	0.15	0.09	0.15	0.08	0.15	0.38	0.15	0.1	0.15	0.08	0.15	0.07	0.15	0.34	0.15	0.08	0.15	0.07	0.15	0.05
0.2	0.52	0.2	0.16	0.2	0.12	0.2	0.1	0.2	0.51	0.2	0.14	0.2	0.12	0.2	0.09	0.2	0.63	0.25	0.12	0.25	0.12	0.2	0.07
0.25	0.6	0.25	0.22	0.25	0.15	0.25	0.13	0.25	0.62	0.25	0.21	0.25	0.14	0.25	0.11	0.3	0.71	0.3	0.31	0.3	0.14	0.3	0.1
0.3	0.66	0.3	0.29	0.3	0.19	0.3	0.16	0.3	0.69	0.3	0.3	0.3	0.17	0.3	0.13	0.35	0.76	0.35	0.42	0.35	0.16	0.35	0.12
0.35	0.75	0.35	0.55	0.35	0.23	0.35	0.19	0.35	0.74	0.35	0.52	0.35	0.23	0.35	0.13	0.4	0.8	0.4	0.53	0.4	0.19	0.4	0.14
0.45	0.79	0.45	0.62	0.45	0.32	0.45	0.22	0.45	0.81	0.45	0.63	0.45	0.27	0.45	0.21	0.45	0.83	0.45	0.64	0.45	0.22	0.45	0.16
0.5	0.82	0.5	0.7	0.5	0.38	0.5	0.28	0.5	0.84	0.5	0.72	0.5	0.33	0.5	0.24	0.5	0.86	0.5	0.73	0.5	0.29	0.5	0.19
0.55	0.84	0.55	0.76	0.55	0.45	0.55	0.32	0.55	0.86	0.55	0.78	0.55	0.42	0.55	0.27	0.55	0.88	0.55	0.8	0.55	0.39	0.55	0.21
0.6	0.86	0.6	0.81	0.6	0.57	0.6	0.35	0.6	0.88	0.6	0.83	0.6	0.55	0.6	0.3	0.6	0.9	0.6	0.86	0.6	0.54	0.6	0.25
0.65	0.88	0.65	0.85	0.65	0.7	0.65	0.39	0.65	0.9	0.65	0.87	0.65	0.69	0.65	0.34	0.65	0.92	0.65	0.89	0.65	0.68	0.65	0.29
0.7	0.9	0.7	0.88	0.7	0.79	0.7	0.45	0.7	0.92	0.7	0.9	0.7	0.79	0.7	0.4	0.7	0.93	0.7	0.92	0.7	0.79	0.7	0.35
0.75	0.92	0.75	0.91	0.75	0.85	0.75	0.51	0.75	0.94	0.75	0.92	0.75	0.86	0.75	0.47	0.75	0.95	0.75	0.94	0.75	0.87	0.75	0.43
0.8	0.94	0.8	0.93	0.8	0.89	0.8	0.59	0.8	0.95	0.8	0.94	0.8	0.91	0.8	0.57	0.8	0.96	0.8	0.96	0.8	0.92	0.8	0.54
0.85	0.96	0.85	0.95	0.85	0.92	0.85	0.72	0.85	0.96	0.85	0.96	0.85	0.94	0.85	0.74	0.85	0.97	0.85	0.97	0.85	0.95	0.85	0.75
0.9	0.97	0.9	0.97	0.9	0.95	0.9	0.84	0.9	0.97	0.9	0.97	0.9	0.96	0.9	0.88	0.9	0.98	0.9	0.98	0.9	0.97	0.9	0.92
0.95	0.98	0.95	0.98	0.95	0.97	0.95	0.92	0.95	0.98	0.95	0.98	0.95	0.98	0.95	0.95	0.95	0.99	0.95	0.99	0.95	0.99	0.95	0.97
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
EQU	JA1	EQ	UA 2	EC	LUA 3	EC	UA4	EQU	JA S	EQ	UA 6	EQ	JA 7	EQ	UA8	EQ	UA9	EQU	IA 10	EQ	UA 11	EQ	UA 12
	Huff		< 10 SM								2			1					5				6
QUA 1	1	f(x)	$= -0.008^{\circ}$	0.0567	886219	9148 +	3.8936455	9079513x	- 8.0107	88892871	1345x1+:	10.08932	22062620	2x1 - 7.89	949664293	26813x"+	·3.886900	04544054	757x°-0	96332	524025	775.26y	
				190007									200/0/9									//2200	
QUA 2	2	f(x)				08 + 1.5	77876529	77569964	- 13.337	99672135	50553x ² +			-	0.312739	39030612	x ⁴ + 119.7	78355401	69.53.05k ³		452859		
	2		= -0.0063	348569	305089		77876529					+ 70.8376	532 29 16 3	03x ¹ - 14						- 37.54		099024	8x ⁶
QUA 2 QUA 3		f(x)	= -0.0063 = 0.00504	3485693 438160	305089 872.92.3	32-0.:		63 75 59 38	x + 10.79	6122895	301.72.3×2	+ 70.8376 2 - 57.314	532 29 16 3 73 37 573 8	03x ³ - 14 438x3 + :	132.63470	3940565	06x4 - 13	1.548029	8008122	- 37.54 5+46.	542462	099024 056433	8x ⁶ 5284x
QUA 2 QUA 3 QUA 4	3	f(x) f(x) Area	= -0.0063 = 0.0050 = -0.0043 > 10 and	3485693 438160 189993 <50 S N	805089 872923 581296 1	32-0.: 905+0	10709584 85353601	63755938 37087762	x + 10.79 x - 5.206	09359056	301 72 3x 2 526 5x 2 +	+ 70.8376 2 - 57.314 28.03112	632 29 16 3 73 37 57 3 8 51 44 326 8	03x ³ - 14 438x3 + 1 25x3 - 64	132.63470 1.9262911	03940565 433621x4	06x4 - 13 4+67.539	1.548029 36756915	8008122) 0763(5 -	- 37.54 5+46. 25.288	542462 949379	099024 056439 224423	8x ⁶ 52.84x 0x6
QUA 2 QUA 3 QUA 4	3	f(x) f(x) Area	= -0.0063 = 0.0050 = -0.0043 > 10 and	3485693 438160 189993 <50 S N	805089 872923 581296 1	32-0.: 905+0	10709584	63755938 37087762	x + 10.79 x - 5.206	09359056	301 72 3x 2 526 5x 2 +	+ 70.8376 2 - 57.314 28.03112	632 29 16 3 73 37 57 3 8 51 44 326 8	03x ³ - 14 438x3 + 1 25x3 - 64	132.63470 1.9262911	03940565 433621x4	06x4 - 13 4+67.539	1.548029 36756915	8008122) 0763(5 -	- 37.54 5+46. 25.288	542462 949379	099024 056439 224423	8x ⁶ 52.84x 0x6
QUA 2 QUA 3 QUA 4	3	f(x) f(x) Area f(x)	= -0.0063 = 0.0050 = -0.0041 > 10 and = 0.00153	448569 4381.60 189993 <50 S N 838620	305089 872923 581296 1 316865	32 - 0.: 905 + 0 633 + 1	10709584 85353601	63 75 59 38 37 08 77 62 78 40 290 92	x + 10.79 x - 5.206 x + 12.25	9612 2895 093 590 56 364 22 452	301723×2 5255×2+ 320652×	+ 70.8376 2 - 57.314 28.08112 2 - 60.587	532 29163 73 37 573 8 51 44 3268 78 809 77 25	03x ³ - 14 438x3 + : 25x3 - 64 9585x3 +	132.63470 4.9262911 108.6533	03940565 433621x4 88193918	06x4 - 13 4+67.539 22x4 - 88	1 548029 6 75691 5 .1 3542 37	80081220 0763x5 - 0144062	- 37.54 (5+46. 25.288) (5+27.	542462 949379 .051810	099024 056435 224423 063865	8x ⁶ 52.84x 54.84x 54.
QUA 2 QUA 3 QUA 4 QUA 5 QUA 6	3 4	f(x) f(x) Area f(x) f(x)	=-0.0063 =0.0050 =-0.0043 >10 and =0.00163 =-0.0020	448569 438160 189993 <505N 838620 296415	305089 872923 581296 4 316865 561631	32 - 0.: 905 + 0 633 + 1 099 + 1	10709584 85353601 .78128447	63 75 59 38 37 08 77 62 840 290 92 25 07 79 59	x + 10.79 x - 5.206 x + 12.22 x - 11.03	09359056 09359056 36422452 55075021	301723x2 5265x2+ 320652x2	+ 70.8376 2 - 57.314 28.03112 2 - 60.587 2 + 66.468	532 29163 7337 5738 5144 3268 8809 77 29 91 23 512 5	03x ³ - 14 438x3 + : 25x3 - 64 9585x3 + 901x3 - 1	132.63470 1.9262911 108.6533 136.75467	03940565 433621x4 88193918 74994175(06x4 - 13 4+67.539 122x4 - 88 02x4 + 11	1 548029 36756915 .1354237 8 554597	80081220 0763x5 - 0144062x 96231415	- 37.54 5+46. 25.288 (5+27. (5+27.	542462 949379 .051810 7.41307	099024 056435 224423 063865 422197	8x ⁶ 52.84x x6 23.16x 28.84x
QUA 2 QUA 3 QUA 4 QUA 5 QUA 5 QUA 6 QUA 7	3 4 1 2 3	f(x) f(x) Area f(x) f(x) f(x)	= -0.0063 = 0.00504 = -0.0043 > 10 and = 0.00168 = -0.0020 = 0.00434	348569: 438160 189993: <50 SN 838520 0964150 426235	805089 872923 581296 4 316865 561631 600119	32 - 0.: 905 + 0 633 + 1 999 + 1 945 - 0	10709584 85353601 .78128447 17678684 50346563	63 75 59 38 37 08 77 62 840 290 92 25 07 79 59 68 29 27 54	x + 10.79 x - 5.206 x + 12.29 x - 11.03 x + 16.12	09359056 09359056 36422452 55075021 21002341	301723x2 5265x2+ 320652x 10999x2 97042x2	+ 70.8376 2 - 57.314 28.03112 2 - 60.587 2 + 66.468 - 84.1585	532 29163 7337 5738 5144 3268 8809 77 29 91 23 512 5 67 65 2904	03x ¹ - 14 438x3 + 1 25x3 - 64 9585x3 + 901x3 - 1 86x3 + 1	132.63470 4.9252911 108.6533 136.75467 89.026929	03940565 (433621x) 88193918 (4994175) 93215231	05x4 - 13 4+67.539 122x4 - 88 12x4 + 11 x4 - 183.7	1.548029 36756915 3.1354237 8.554597 25873923	80081220 0763x5 - 0144062 96231415 564838x5	- 37.54 (5+46. 25.288 (5+27. (5+27. (5-37) (5-37) (5-37) (5-37)	542462 949379 .051810 .41307 759597	099024 056433 224423 063.865 422.197 440073	8x ⁶ 52.84x(x6 23.16x 28.84x 36.4x6
QUA 2	3 4 1 2	f(x) f(x) f(x) f(x) f(x) f(x)	= -0.0063 = 0.00504 = -0.0041 = >10 and = 0.00168 = -0.0020 = 0.00434 = -0.0067	3485693 438160 1899933 <50 SN 838620 096415 426235 716867	305089 872923 581296 1 316865 561631 600119 573387	32 - 0.: 905 + 0 633 + 1 999 + 1 945 - 0	10709584 85353601 .78128447 17678684	63 75 59 38 37 08 77 62 840 290 92 25 07 79 59 68 29 27 54	x + 10.79 x - 5.206 x + 12.29 x - 11.03 x + 16.12	09359056 09359056 36422452 55075021 21002341	301723x2 5265x2+ 320652x 10999x2 97042x2	+ 70.8376 2 - 57.314 28.03112 2 - 60.587 2 + 66.468 - 84.1585	532 29163 7337 5738 5144 3268 8809 77 29 91 23 512 5 67 65 2904	03x ¹ - 14 438x3 + 1 25x3 - 64 9585x3 + 901x3 - 1 86x3 + 1	132.63470 4.9252911 108.6533 136.75467 89.026929	03940565 (433621x) 88193918 (4994175) 93215231	05x4 - 13 4+67.539 122x4 - 88 12x4 + 11 x4 - 183.7	1.548029 36756915 3.1354237 8.554597 25873923	80081220 0763x5 - 0144062 96231415 564838x5	- 37.54 (5+46. 25.288 (5+27. (5+27. (5-37) (5-37) (5-37) (5-37)	542462 949379 .051810 .41307 759597	099024 056433 224423 063.865 422.197 440073	8x ⁶ 5284x6 x6 2316x 2884x 364x6
QUA 2 QUA 3 QUA 4 QUA 5 QUA 5 QUA 6 QUA 7	3 4 1 2 3	f(x) f(x) f(x) f(x) f(x) f(x)	= -0.0063 = 0.0050 = -0.0043 > 10 and = 0.00168 = -0.0020 = 0.0043	3485693 438160 1899933 <50 SN 838620 096415 426235 716867	305089 872923 581296 1 316865 561631 600119 573387	32 - 0.: 905 + 0 633 + 1 999 + 1 945 - 0	10709584 85353601 .78128447 17678684 50346563	63 75 59 38 37 08 77 62 840 290 92 25 07 79 59 68 29 27 54	x + 10.79 x - 5.206 x + 12.29 x - 11.03 x + 16.12	09359056 09359056 36422452 55075021 21002341	301723x2 5265x2+ 320652x 10999x2 97042x2	+ 70.8376 2 - 57.314 28.03112 2 - 60.587 2 + 66.468 - 84.1585	532 29163 7337 5738 5144 3268 8809 77 29 91 23 512 5 67 65 2904	03x ¹ - 14 438x3 + 1 25x3 - 64 9585x3 + 901x3 - 1 86x3 + 1	132.63470 4.9252911 108.6533 136.75467 89.026929	03940565 (433621x) 88193918 (4994175) 93215231	05x4 - 13 4+67.539 122x4 - 88 12x4 + 11 x4 - 183.7	1.548029 36756915 3.1354237 8.554597 25873923	80081220 0763x5 - 0144062 96231415 564838x5	- 37.54 (5+46. 25.288 (5+27. (5+27. (5-37) (5-37) (5-37) (5-37)	542462 949379 .051810 .41307 759597	099024 056433 224423 063.865 422.197 440073	8x ⁶ 52.84x x6 23.16x 28.84x 36.4x6
QUA 2 QUA 3 QUA 4 QUA 5 QUA 5 QUA 6 QUA 7	3 4 1 2 3	f(x) f(x) Area f(x) f(x) f(x) f(x)	=-0.0063 =0.0050/ =-0.0043 =>10 and =0.00161 =-0.0020 =0.00434 =-0.0067	3485693 438160 189993 <50 S N 838520 295415 426235 716857 <100 S	805089 872923 581296 4 316865 561631 600119 573387 M	32-0.: 905+0 633+1 999+1 946-0 529+1	10709584 85353601 .78128447 17678684 50346563	63 75 59 38 3708 77 62 840 290 92 2507 79 59 68 29 27 54 67 27 48 02	x + 10.79 x - 5.206 x + 12.25 x - 11.03 x + 16.12 x - 9.884	2612 2895 093 590 56 364 22 462 5 50 750 21 2 100 23 41 5 05 772 36	301723x2 5265x2+ 320652x1 10999x2 97042x2 52129x2+	+ 70.8375/ 2 - 57.314 28.03112 2 - 60.587 2 + 66.468 - 84.1585 + 50.0525	532 29 163 73 37 5738 51 44 3268 8809 77 29 91 23 512 5 67 65 290 4 47 71 501 3	03x ³ - 14 438x3 + : 22x3 - 64 9585x3 + : 901x3 - 1 86x3 + 1 33x3 - 1	132.63470 1.9262911 108.6533 136.75467 89.026925 12.988693	03940565 (433621)(4 88193918 (4994175) (3215231 (5991731)	06x4 - 13 4+67.53 22x4-88 02x4+11 x4 - 183.7 8x4+116	1 548029 6756915 .1354237 8 554597 25873923 .2137139	8008122) 0763x5 - 0144062) 96231415 564838x5 4691216x	- 37.54 (5+46.) 25.288 (5+27.) (x5-37) (5-43.)	542462 949379 051810 241307 759597 525656	099024 056433 224423 063865 422197 440073 045956	8x ⁶ 52.84x 52.84x 52.84x 23.16x 228.84x 36.4x 6 24x 6 24x 6
QUA 2 QUA 3 QUA 4 QUA 5 QUA 5 QUA 6 QUA 7 QUA 8	3 4 1 2 3 4 4	f(x) f(x) f(x) f(x) f(x) f(x) f(x) f(x)	=-0.0063 =0.00504 =-0.0043 =-0.00264 =-0.00266 =-0.00267 =-0.0027 =-0.0027 =-0.00294	348569 438160 189993 <50 SN 838520 296415 426235 716867 <100 St 658457	305089 872923 581296 4 316865 561631 600119 573387 4 484516	32-0.: 905+0 633+1 946-0 529+1 942+0	10709584 85353601 .78128447 17678684 50346563 13740737	63 75 59 38 37 08 77 62 18 40 29 09 2 25 07 79 59 68 29 27 54 57 27 48 02 10 11 33 1 58	x + 10.79 x - 5.206 x + 12.29 x - 11.03 x + 16.12 x - 9.884 86x + 28	e6122895 09359056 36422462 55075021 21002341 50577236	301723x2 5265x2+ 320652x1 109999x2 97042x2 52129x2+ 8441957	+ 70.8376/ 2 - 57.314 28.03112 2 - 60.587 2 + 66.468 - 84.1585 + 50.0525 2x2 - 113.	532 29 163 73 37 5738 51 44 3268 8809 77 29 91 23 512 5 67 65 290 4 47 71 501 3 0 788 30 56	03x ³ - 14 4438x3 + : 125x3 - 64 9585x3 + : 9901x3 - 1 188x3 + 1 133x3 - 1 9342679x	132.63470 4.9262911 108.6533 136.75467 89.026925 12.988699 3+190.9	03940565 (433621x) 88193918 (4994175) 03215231 (5991731) 02109581	06x4 - 13 4+67.539 22x4 - 88 02x4 + 11 x4 - 183.2 8x4 + 116 32326x4	1.548029 66756915 1.1354237 8.554597 25873923 2137139 - 149.909	8008122x 0753x5 - 0144052x 96231415 564838x5 4691216x 7208559	- 37.54 (5+46. 25.288) (5+27. (x5-37) (5-43.) (5-43.) (9813)(5	542462 949379 051810 141307 759597 525656 +44.97	099024 056433 224423 063865 422197 440073 045956	8x ⁶ 52.84x 52.84x 52.84x 23.15x 28.84x 36.4x 54x 54x 54x 54x 54x 54x 54x 54x 54x 5
QUA 2 QUA 3 QUA 4 QUA 5 QUA 5 QUA 6 QUA 7 QUA 8	3 4 1 2 3 4 4 1 2 2	f(x) f(x) f(x) f(x) f(x) f(x) f(x) f(x)	=-0.0063 =0.00504 =-0.0043 =-0.0026 =-0.0026 =-0.0027 =-0.0027 =-0.0029 =-0.0029 =-0.0029	4485693 438160 1899933 <50 SN 838520 096415 426235 716867 <100 St 658457 443059	305089 872923 581296 1 316865 561631 600119 573387 M 484516 356119	32-0.: 905+0 633+1 946-0 529+1 942+0 56+0.	10709584 85353601 .78128447 17678684 50346563 13740737	63 75 59 38 37 08 77 62 840 290 92 25 07 79 59 68 29 27 54 67 27 48 02 01 1 33 1 58 3 25 63 1 40	x + 10.79 x - 5.206 x + 12.29 x - 11.03 x + 16.12 x - 9.884 865x + 28 c - 6.4774	093 590 56 093 590 56 364 22 462 5 50 750 21 2 100 23 41 5 05 772 36 0 61 5 561 1971 81 21	301723x2 5265x2+ 320652x1 109999x2 97042x2 52129x2+ 8441957 66x2+52	+ 70.8376/ 2 - 57.314 28.03112 2 - 60.587 2 + 66.468 - 84.1585 + 50.0525 2x2 - 113. 2 7861465	532 29 163 73 37 5738 51 44 3268 8809 77 29 91 23 512 5 67 65 290 4 47 71 501 3 0 788 30 59 2971 36 26	03x ³ - 14 438x3 + : 125x3 - 64 9585x3 + : 901x3 - 1 186x3 + 1: 133x3 - 1: 9342679x 5x3 - 116	132.63470 4.9262911 108.6533 136.75467 89.026925 12.988693 3+190.9 41090017	03940565 (433621x) 88193918 (4994175) 93215231 (5991731) 02109581 7459854x	06x4 - 13 4+67.539 22x4 - 88 02x4 + 11 x4 - 183.2 8x4 + 116 32326x4 4 + 103.5	1.548029 66756915 1.1354237 8.554597 25873923 2.137139 - 149.909 80616349	8008122x 0753x5 - 0144062x 96231415 564838x5 4691216x 7208559x 48622x5	- 37.54 (5 + 46. 25.288) (5 + 27. (5 - 37. 5 + 63.7 (5 - 43.) 9813(5 - 33.08	542462 949379 051810 141307 759597 525656 +44.97 967692	099024 05643 224423 063865 422197 44007 045956 76900 50937	8x ⁶ 52.84x 52.84x 52.84x 52.84x 52.84x 52.84x 52.84x 52.84x 52.4x 52.4x 52.4x 52.4x 52.4x 52.4x 52.4x 52.4x 52.4x 52.4x 52.84x 54.84x

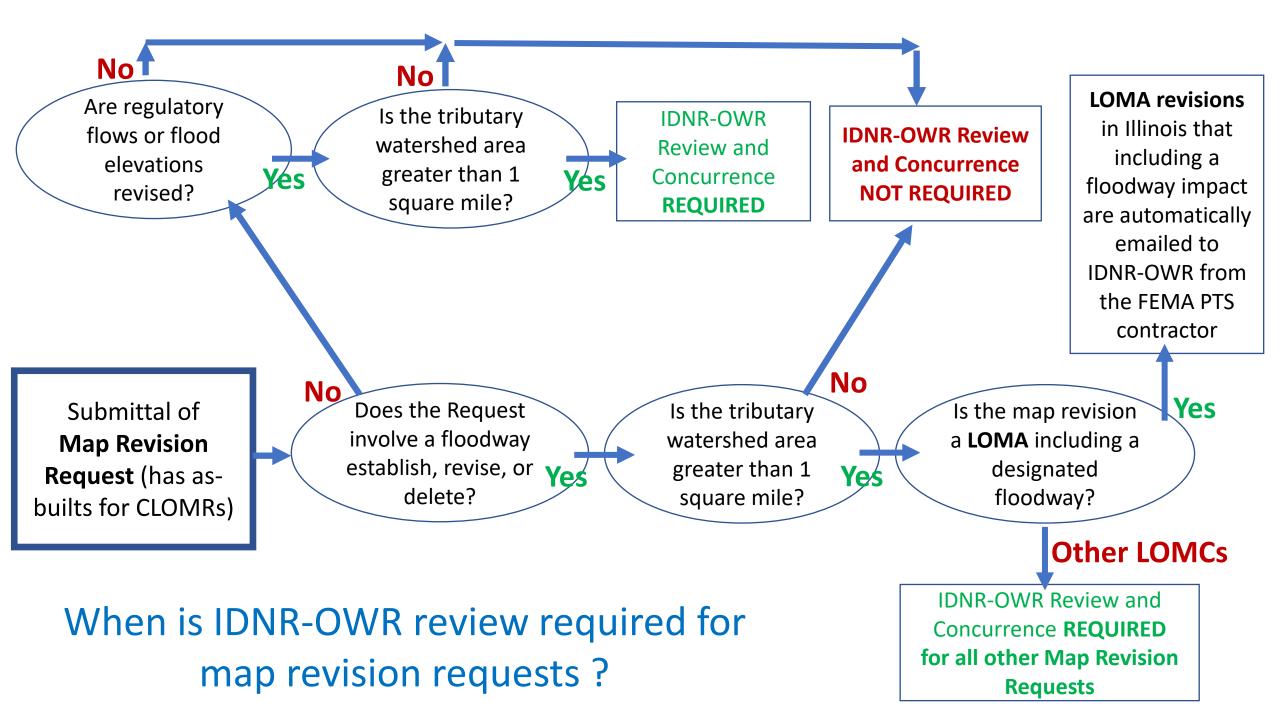
Wait a Minute...

The IAFSM abstract says 13 questions will be answered !

- 1) When is a map revision required for your project?
- 2) How is an Illinois storage floodway calculated?
- 3) Is Bulletin 75 rainfall necessary for all hydrologic simulations?
- 4) Can StreamStats peak flows be used for my project?
- 5) Does the OWR consider floodway map revisions for watersheds less than one square mile?
- 6) How does the OWR coordinate with the Illinois State Water Survey for map change submittals?
- 7) When is a Conditional Letter of Map Revision required?
- 8) Can an unsteady flow model be used to define an Illinois Storage Floodway?
- 9) How can a community allow for a conveyance floodway definition?
- 10) What are the rules for removing restrictive culverts or bridges?
- 11) What calculations and exhibits are typically needed for a successful map revision submittal?
- 12) What types of map changes are included within the category "Best Available Data"?
- 13) How may future 2D modeling change existing FIRM maps, especially considering floodways/floodplain regulations?

1) When is a map revision required for your floodway construction project?

YES, a Map Revision is required

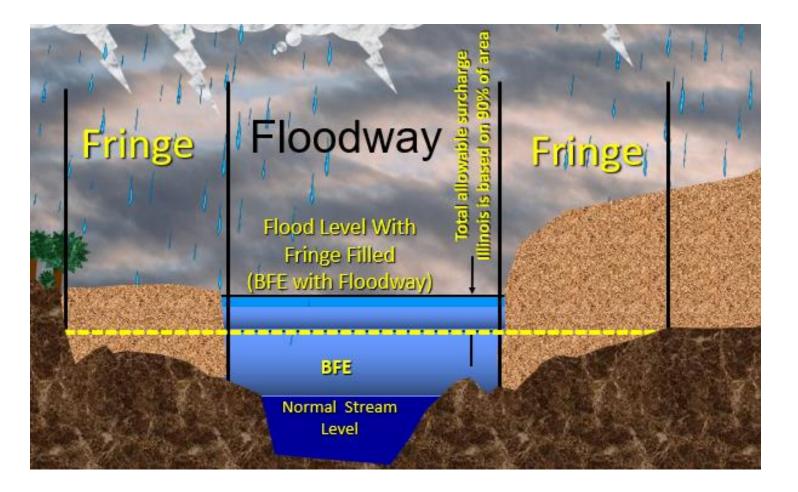

Changes that have:

- Increased or decreased regulatory Base Flood Elevations
- Impacted existing upstream structures causing increased flood damages
- Changed peak flood flows by more than 10%
- Channel relocated

No, Map Revision is not required

Changes that have:

- Not increased or decreased the Base Flood Elevations
- Not changed the peak flood flow changes by more than 10%
- Have Not relocated the channel



2) How is the Illinois storage floodway calculated?

At all cross sections within the hydraulic model:

Select the **widest floodway compared to:**

- 1) 0.1-foot floodway water surface increase
- 2) 5% (by area) filled equally by area (volume) defining the fringes
- 3) 10% max increase in velocity

3) When does IDNR-OWR require applying Bulletin 75 rainfall hydrology? YES, Bulletin75 is REQUIRED

MAJOR PROJECTS = Impacts multiple existing residences / businesses Proposed Detailed studies that update FIRMS out-of-date, and do not meet FEMA standards Approximate Flood Zones <u>studied to become</u> designated floodways Public Flood Control Project Channel relocation A site with floodplain upstream damages use B75 and consider design alternatives

NO, Bulletin75 is not REQUIRED

MINOR PROJECTS =

Bridge spanning the floodplain on piers with trivial impact
Channel stabilization
Underground utilities
Existing large rivers such as: Fox River, Des Plaines River,
(IDNR-OWR accepts effective FEMA peak flows for major rivers)

3) When does IDNR-OWR require applying Bulletin 75 rainfall hydrology?

Portions of an IDNR-OWR memo from Liana Winsauer (March 2020)

Full text within Appendix D in 2024 Map Revision Manual

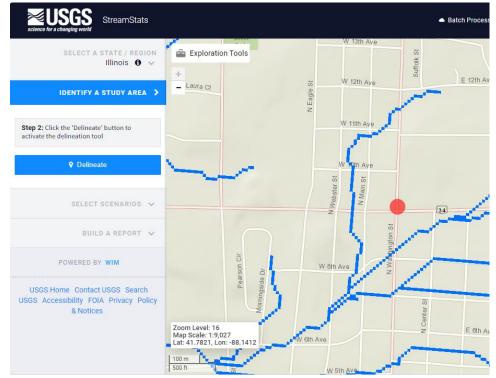
1) The effects of Bulletin 75 are expected to be **reasonably and gradually implemented** into the effective floodplain delineations.

2) Large projects such as flood control projects will be reviewed on a case-by-case basis.

3) If **as-built conditions** proposed mapping has a significant impact to hydrologic flows, Bulletin 75 should be used.

4) Can the USGS StreamStats peak flows be used for my project?

StreamStats https://streamstats.usgs.gov/ss/


- Watershed delineation (drainage area)
- Peak flows are calculated based on regression equations from existing (nearby) stream gage data.
- User defines (sometimes) watershed parameters: slope, land-use, soil conditions, urban percentages, etc.

Yes - Use StreamStats flows for:

- Comparison for watershed area delineation
- Comparison to detailed studies (StreamStats equations consider physical features, wetlands, ponds)
- Approximate studies that delineate but not publish proposed flood elevations
- Peak flow estimates for minor project designs

No - Do not use StreamStat flows for:

- Final flow estimates for detailed studies
- Complex urban areas

5) Does the OWR review floodway map revisions for watersheds less than one square mile?

The answer is NO

IDNR-OWR legal counsel has set the threshold for all floodway and floodplain jurisdictions as MUST DRAIN GREATER than one square mile. Watersheds less than one square mile outside the jurisdiction of IDNR-OWR.

Even if the FIRM has floodway defined... and drains less than one square mile IDNR-OWR does not legal jurisdiction for permit review.

6) How does OWR coordinate with the ISWS for map revisions?

ISWS = FEMA's CTP for Study and Map Revision Review

The ISWS is under contract with FEMA Region V to update FIRM maps as a **Cooperating Technical Partner**. This includes

- 1) The ISWS is building countywide GIS based restudies (hundreds of miles) of all Illinois counties
 - 1) Using BLE levels of mapping accuracy. Generally, BLE more accurate in urban areas
 - 2) Coordinate with IDNR-OWR to ensure IL higher standards are met = Floodway definition and Rules
 - 3) Coordinate with Letters of Map Change
 - 4) Extensive outreach to NFIP communities TOWARDS Discover meetings, Map Adoption and LFD
 - 5) Assist in Emergency Disaster help (RAFT program)

IDNR-OWR = State of Illinois Floodway Change Review

IDNR-OWR ensures that Adopted Rules = Part 3700 – 3702 - 3704 – 3708 are enforced

- 1) Review ISWS major countywide flood studies
- 2) Ensure Illinois higher standards are met for floodway delineation
- 3) Coordinate with FEMA, Letters of Map Change in floodways

7) When is a Conditional Letter of Map Revision (CLOMR) required?

CLOMR = An approved map revision BEFORE any construction starts. A CLOMR is a PRE-approval LOMC. **CLOMR is followed by a LOMR** and the LOMR changes the FIRM. A CLOMR alone does NOT change the FIRM.

FEMA (ISWS) Required CLOMR

1) Any change in water surface elevation (100-year flood) upstream or downstream of a project by more than 0.1 feet,

2) Significant change in SFHA area or limits of flooding, and

3) Any Floodway revisions.

IDNR-OWR Required CLOMR

1) An upstream increase in water surface elevation (100-year flood) by more than 0.1 feet Significant change in SFHA area or limits of flooding,

2) Any floodway revisions

3) Significant land use change (such as new residential subdivision), that alters channel geometry requires a CLOMR.

8) Can an unsteady flow model be used to define an Illinois Storage Floodway?

Steady flow has been the standard for most FEMA flood insurance studies. One peak flow value sets flood elevations.

Unsteady flow creates models where flood flow can change directions (flat watersheds). Flow changes with time

A floodway is a steady flow concept.

Difficult to pick a static water surface at each cross section as the flow varies with time so the floodway varies across the reach. New methods may solve this problem such as Depth vs. velocity plots. Need to define in EACH CROSS SECTION of an unsteady flow model where most of the flow conveyance is located.

Convert Unsteady Flow models to Steady Flow models IDNR-OWR will review on case-by-case basis

IDNR-OWR will discuss all unsteady flow model submittals ahead of time to determine how a "storage floodway" may be defined. FEMA is working on how to define 2D unsteady floodways.

9) How can a community allow for a conveyance floodway definition?

Several Chicagoland communities have been IDNR-OWR approved for the conveyance definition floodway.

A conveyance only floodway requires floodplain storage to be maintained for all future floodway development. All future floodplain construction must provide compensatory floodplain storage at two intervals:

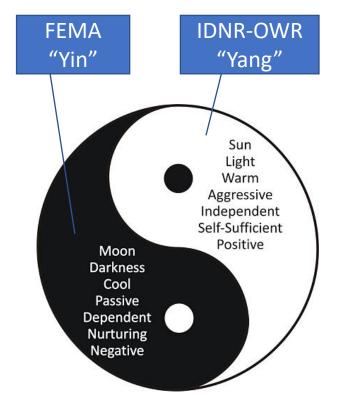
- 1) 0 to 10-year floods
- 2) 10 year to 100-year floods

Most communities require **more** flood water volume than filled (1.5 : 1) IDNR-OWR only requires 1:1 cut to fill mitigation.

IDNR-OWR Conveyance Floodway Approval Process

Process steps:

- 1) The community must pass a Community Assistance Visit (CAV) as being compliant with the NFIP
- 2) Identify waterway for the agreement (Must have a significant reach distance within the Community's corporate limits)
- 3) Submit an updated hydrologic/hydraulic model of the waterway to FEMA and IDNR-OWR for review
- 4) Complete a MOU Conveyance Only Floodway Memorandum of Understanding (MOU) signed by the Community's CEO


10) What are the rules for removing restrictive culverts or bridges?

The State of Illinois regards runoff flood water legally as a "common enemy". This means that the higher landowner can discharge runoff and floodwater onto the lower property landowner.

FEMA requires a LOMC for opening of a restrictive crossing,

should the downstream 100-year flood elevation be increased by more than 0.1 feet or if flood peak flood flows increase significantly.

IDNR-OWR **does NOT regulate downstream** flood elevation increases. IDNR-OWR does regulate upstream flood elevation increases.

IDNR-OWR allows restrictive crossings to be opened FEMA may require LOMC for Opened Restrictive Crossings

Submit the following:

1) Map Revision Report outlining the project scope and reason for the map change (LOMC)

2) Digital Hydrologic and Hydraulic calculations

(no need to plot all cross sections, maybe just significant bridges/culverts)

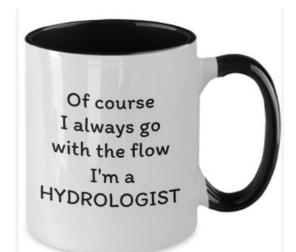
- 1) Calibration/Verification ? Stream gages, StreamStats, observed recent storm high waters
- 2) HEC-HMS commonly used for hydrologic peak flows
 - 1) Use Huff Distributions and Critical Duration storms 1,3,6,12,24,72 hour simulations
- 3) HEC-RAS commonly used for 1D analysis
 - 1) Include floodway simulations and estimate storage floodway volumes

3) Annotated map

1) Show existing and proposed floodplain lines

Map Revision Supporting Information

- Narrative (Meet with us before submittal)
- Location Map (project location and size of property)
- FIRM (use the National Flood Hazard Layer maps)
- Site Plan (show property limits, 11x17 sheets are ok)
- Grading Plan (overlay existing and proposed grades)
- Provide Cross Sections (especially road projects)
- Construction Drawings (PE sealed title sheet)
- Computations/H&H Analyses (provide digital models)
- Engineering Report (w/ flood damage assessments)


National Flood Hazard Layer viewer Please highlight your project location.

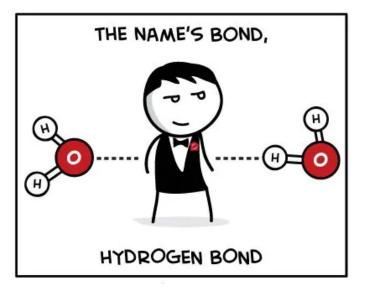
ONLY ONE COPY of APPLICATION SUBMITTAL IS NEEDED...

Map Revision Submittal Information

Narrative Outline

- 1. Existing Conditions Locate by major roadways, FIRM panel Number
- 2. Proposed Project Phased construction? Upstream damage?
- 3. Hydrology and Hydraulics FEMA model? Add Cross Sections?
- 4. Mitigated Storage Calculations Floodway fill calcs.: 0-10 & 10-100 ?
- No Wetlands Information needed
- Plot too many HEC-RAS Cross Sections
- See Tables for Hydrology and Hydraulics (2024 Map Revision Manual)
 - Water surface changes (10yr. & 100 yr.)
 - Conveyance, storage, and % velocity at each cross section

New Hydrology/Flow Approval Checklist


Marrative

- Project Description
- General Location Map
- □ Analysis Methods
- □ Rainfall Amounts
- □ Rainfall Distributions
- □ Sensitivity Analysis
- □ Calibration
- Documentation of Restrictive Road Crossings
- □ Signed & Sealed by P.E.
- □ Maps & Schematics
 - □ Include Subbasins & Names
 - □ Include Other Significant Points
 - □ Aerial Photography
 - □ Topography
 - □ Land Use
 - □ Soils
 - □ Floodplain/Floodway
 - □ Model Schematic

- □ Supporting Calculations □ Curve Numbers
 - □ Lag Time/TC
 - Rating Curves
- □ Routing Parameters □ Models
 - □ Hydrologic Print & Electronic
 - □ Hydraulic Print & Electronic
 - □ Floodway Definition
 - □ Structure-Specific
- □ Summary Tables
 - Subbasin & Section IDs
 - General Hydrology Results
 - Sensitivity Analysis
 - General Hydraulic Results
 - Floodway Definition

Use Huff Quartiles within the critical duration analysis to capture peak flows for each sub-watershed. Use Bulletin 75 rainfall Calibrate several events if possible.

Larger watersheds peak with longer duration events, often near their time of concentration durations.

12) What types of map changes are included within the category "Best Available Data"?

The State of Illinois approves "Best Available Data" map revisions generally as Approximate A-Zones

New A-Zone models are built on topographic LiDAR and include unpublished Base Flood Elevations These new Approximate Zone studies are approved by IDNR-OWR as Best Available Data.

New A-Zone Study

BAD studies are generally associated with A-Zone determinations (not Detailed Studies)

- 1) New A-Zone studies
- 2) A-Zone new studies generally use:
 - 1) Approximate flows (StreamStats),
 - 2) No bridge survey and
 - 3) LiDAR topography

Effective Study NOT Found Use "Only Available Study"

After submitting a request to FEMA and/or ISWS Map Service Center <u>https://msc.fema.gov/portal/resources/contact</u> ISWS <u>https://www.isws.illinois.edu/champ</u> and no study is found...

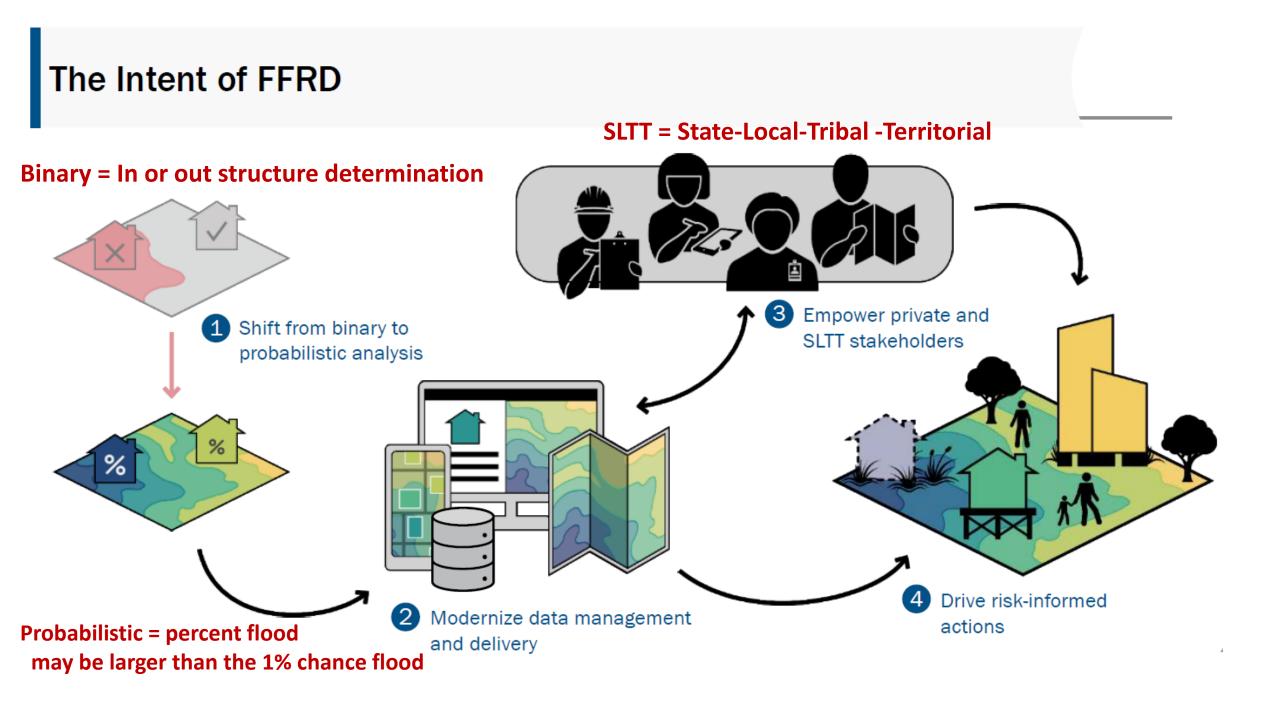
Then contact other government agencies Counties, MWRDGC, USACE, NRCS etc.

If a study is located it becomes a "Best Available Study" or "Only Available Study"

13) 7-Minute Introduction to FEMA Future Flood Risk (FFRD)

ALL FIRMS to be REMAPPED NATIONWIDE

Future Flood Risk Data (FFRD) is in a **research phase with pilot programs** and help from USACE-NOAA-USGS etc. For several years... FEMA has been evaluating pilot studies/programs.


FFRD 2D MODELING APPROACH

Two-Dimensional (2D) modeling **used nationwide**:

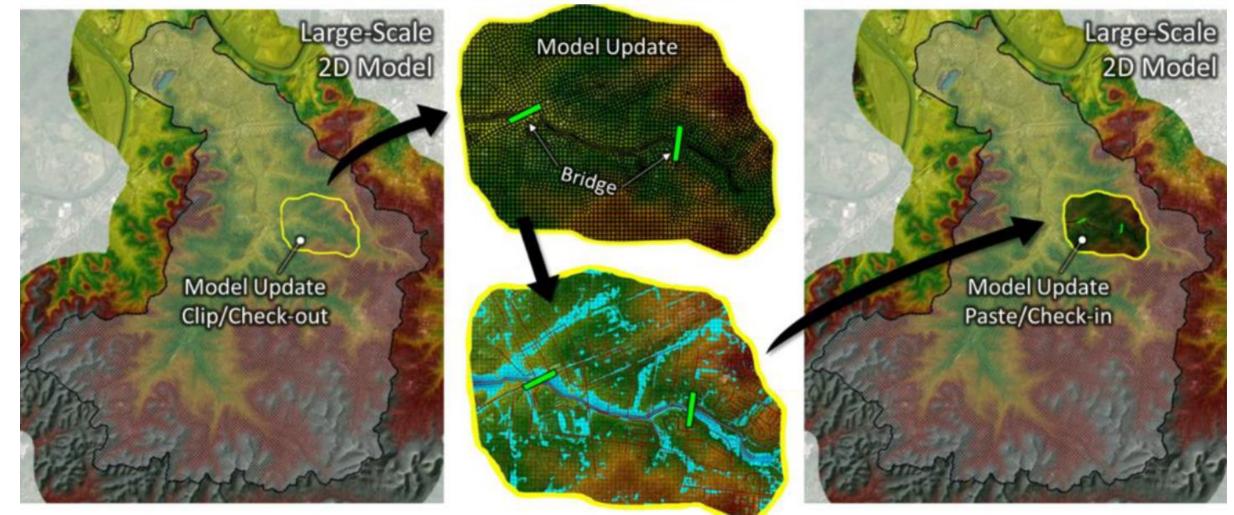
- 1) Mainstems and tributaries in one simulation. **3 hours per simulations** are common
- 2) Rain on mesh determines hydrographs. Each cell in watersheds have runoff and storage components.
- 3) Floodway definition still evolving Depth x velocity and others
- 4) Researching model maintenance ways to cut and paste LOMRs.
- 5) Complex GIS based modeling USACE driven (new HEC-RAS 2D models)

GENERAL FFRD CONCEPTS

Floodway testing: DxV relationships, RAS6.4 functionality & HEC improvements, future FW concept testing Cell size sensitivity: mesh specifications and configurations for current & FFRD Bathymetry sensitivity: various options considered for current & FFRD Rain-on-Mesh calibration: evaluation various approaches and tolerances for current & FFRD Large-scale model maintenance: check-out/check-in concept for future living model concept

Future Floodway Concepts

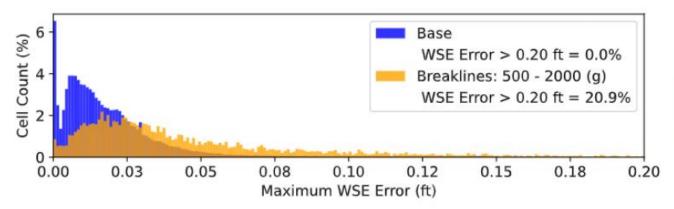
Floodway definition is central to many existing flooding ordinances. D*V has promise, but other ideas still being considered.

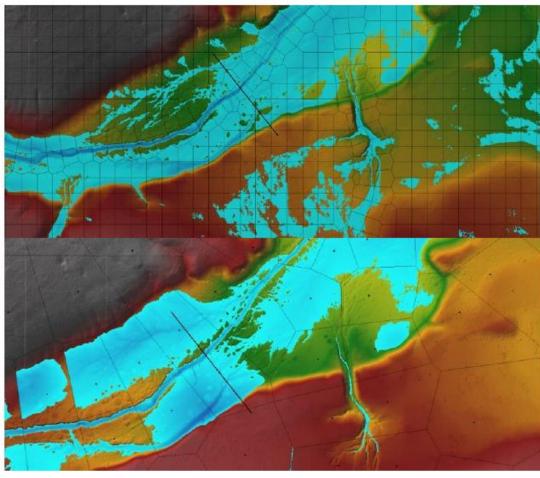

FPM by D*V Hazard Zones & % Allowable Development

Large Scale Model Maintenance

Very challenging to do this, the USACE is finalizing routines to be available within future HEC software.

Testing 3 approaches - mostly successful manually, evaluating automated approaches now

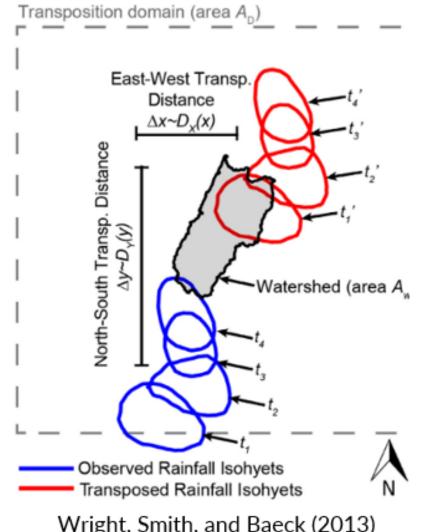



Cell Size Sensitivity

FFRD has a good handle on this from their 5 pilot programs. BLE may change cell size criteria.

- » Evaluating model sensitivity to cell sizes used in rain-on-mesh 2D models
- » Tracking impacts to run times, model results (flow, water surface elevations, velocity, etc.), and mapability
- » Goal: Provide guidance on cell size thresholds and level of refinement.

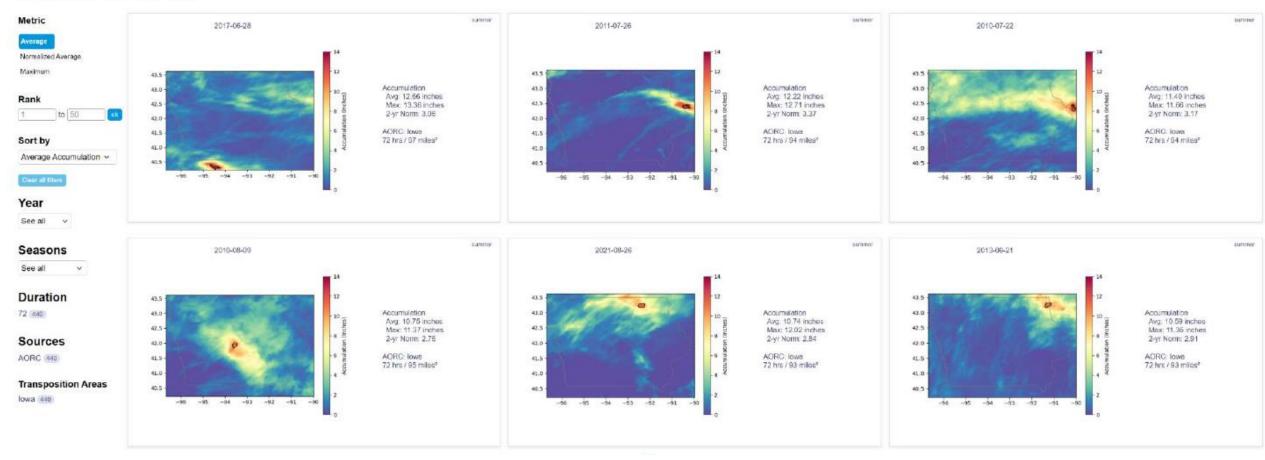
Both Base Level Engineering (BLE)/regulatory and Future of Flood Risk Data (FFRD)



Has significant statistical advantages by recreating and moving an existing recent large flood event..

Stochastic Storm Transposition (SST)

- Non-parametric space-for-time substitution
- Resample severe storm events from a catalog
- Preserve properties of real storms
- Develop watershed-average precipitationfrequency
- Transpose multiple storms per year
 - Use a data-driven approach to reduce assumptions



Radar videos can be created to show various SST simulations.

Storms Database for Stochastic Storm Transposition (SST)

Storms Database Viewer

Development space for searching historic storms

Description – What the Effort Entailed?

- Extensive efforts, collaboration, and documentation related to coastal and inland probabilistic methodology exploration and testing, including application within multiple geographies to support RR2.0 team; explorations into leveraging 2D BLE investments and upgrading to probabilistic
- Development of multiple graduated hazard and risk dataset and product prototypes that leverage probabilistic data, with outputs developed to benefit stakeholders beyond insurance and mapping
- Multiple pilots and data compilations to help illustrate the types and formats of data that would be available once FFRD has been "delivered" within a geography (ongoing)

Main Takeaways

- Probabilistic engineering methods have been extensively tested and validated as the way to produced graduated flood hazard and risk data
- USACE is a key partner and is leading final probabilistic methodology development
- Coastal is farther along than inland coastal methods have been finalized and probabilistic data has been generated in coastal Louisiana; USACE is actively finalizing inland probabilistic methods
- Sample FFRD datasets and user guides will be produced for internal review by Fall 2023

Future Recommendations & Limitations

- Integration with future conditions has been briefly explored but likely needs additional focus
- Once finalized, inland methods likely will require testing/application and external review by multiple partners to fully validate, prior to national operationalization.

Synergy with Other Efforts

Close ties w/ the 2D modeling efforts, as 2D modeling is envisioned as the modeling framework for performing probabilistic analyses in the future. USACE coordination projects also are closely related, as USACE led methodology development for coastal and is nearing completion of SOPs for inland flooding. Projects here also are connected with some of the Stakeholder Engagement projects, as many of the graduated data prototypes developed as part of these projects were shared with multiple internal stakeholders over the past few years. PFRA efforts also validated the application of probabilistic methods within the cloud environment and therefore has synergy w/ the IT projects.

Sample FFRD Summary slide (portion of the slide)

Main Issues within this slide:

1) Coastal modeling is near final,

- 2) Inland probabilities (Spring 2024)
- **3)** 2D modeling is the future for FEMA mapping projects
 - * use in the cloud
 - * stakeholders reviewing results
 - * more uses than just insurance
 - * integrate with future conditions
 - * review is ongoing

Probabilistic Methods and Graduated Data Origin & Desired Outcome

Exploration, testing, and application of probabilistic flood hazard and risk methodologies as the foundational engineering methodology to create FFRD data and support FFRD's goals. Prototyping and development of various datasets and products to help communicate the graduated nature of flood hazards and risks.

Description – What the Effort Entailed?

- Extensive efforts, collaboration, and documentation related to coastal and inland probabilistic methodology exploration and testing, including application within multiple geographies to support RR2.0 team; explorations into leveraging 2D BLE investments and upgrading to probabilistic
- Development of multiple graduated hazard and risk dataset and product prototypes that leverage probabilistic data, with outputs developed to benefit stakeholders beyond insurance and mapping
- Multiple pilots and data compilations to help illustrate the types and formats of data that would be available once FFRD has been "delivered" within a geography (ongoing)

Main Takeaways

- Probabilistic engineering methods have been extensively tested and validated as the way to produced graduated flood hazard and risk data
- USACE is a key partner and is leading final probabilistic methodology development
- Coastal is farther along than inland coastal methods have been finalized and probabilistic data has been generated in coastal Louisiana; USACE is actively finalizing inland probabilistic methods
- Sample FFRD datasets and user guides will be produced for internal review by Fall 2023

Future Recommendations & Limitations

- · Integration with future conditions has been briefly explored but likely needs additional focus
- Once finalized, inland methods likely will require testing/application and eternal review by multiple partners to fully validate, prior to national operationalization.

Synergy with Other Efforts

Close ties w/ the 2D modeling efforts, as 2D modeling is invisioned as the modeling framework for performing probabilistic analyses in the future OSACE coerdination projects also are closely related, as USACE led methodology development for clastal and is nearing completion of SOPs for inland flooding. Projects here also are connected with some of the Stakeholder Engagement projects, as many of the graduated data prototypes developed as part of these projects were shared with multiple internal stakeholders over the past few years. PFRA efforts also validated the application of probabilistic methods within the cloud environment and therefore has synergy w/ the IT projects.

Dala									End Ongoing			
	Entit	ties Invo	olved (b	eyo	nd RN	1D)	FFRD	Tie-Ins	(no, lo	w, med,	high)	
	Regions	Grants	FPM	Ins.	USACE	Other	H&H/2D	Prob	Future	Engage	Dam/	
	x		х	х	Х		Products	Risk	Pluvial	IT/Tech	Othe	
	Geo	ed, hi	Technical Components Advanced									
	Inland	Great Lakes	Atl/Gulf/ Carib		acific DNUS	Pacific OCONUS	AEP, Los Uncerta		Flexible amewor	National k Coverage		
		Visuals						# of activities			25	
e	FLO PTS1	LORATIONS IN DOD HAZARD AL KANDWILLION FYEIGHT					e Sin be she					
		Deta Version V			icts			egrannet tex food fex food fex food food for tex sheet for tex for tex	ce Probability		s 2027	

The FFRD FEMA program is a coordination of USACE, NOAA, FEMA, GIS, IT, OTHER AGENCIES, merging each expertise into a process than can be replicated and is good science. It appears at first to be too complicated, yet good science is not always simple.

Start Fall 2017 End Ongoing

1-12

q'ts

Future Flood Risk Data (FFRD)

Pre 2024 FIRMS

- 1% Annual Chance Flood Flow
- Steady Flow Analysis used in most waterway FIRMs will be phased out
- Each mainstem has separate H&H modeled tributaries

Post 2024 FIRMS under FFRD

- SST Multiple storms, continuous **2D simulations use statistical probabilities**
- One major watershed model with all tributaries included
- Maps would have no clear "In or Out"... Probabilistic Analysis FFRD FIRMS can be used for mitigation projects, more accurate damage assessments, flood control projects, etc.

The FFRD program will take time to understand and implement. It has a very positive future potential.

IDNR-OWR Offices

Northeastern Illinois

Regulatory Programs 2050 W. Stearns Road Bartlett, IL 60103 Phone (847) 608-3116

William T. Boyd, Section Chief NE Illinois Regulatory Program Downstate Illinois Regulatory Programs One Natural Resource Way Springfield, IL 62702-1271 Phone (217) 782-0900

Steven C. Altman, Manager Division of Resource Management **William Milner,** Section Chief Downstate Regulatory Program

Mark.Hoskins@illinois.gov